MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeofn Unicode version

Theorem hmeofn 17464
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn  |-  Homeo  Fn  ( Top  X.  Top )

Proof of Theorem hmeofn
Dummy variables  f 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 17462 . 2  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
2 ovex 5899 . . 3  |-  ( j  Cn  k )  e. 
_V
32rabex 4181 . 2  |-  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }  e.  _V
41, 3fnmpt2i 6209 1  |-  Homeo  Fn  ( Top  X.  Top )
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   {crab 2560    X. cxp 4703   `'ccnv 4704    Fn wfn 5266  (class class class)co 5874   Topctop 16647    Cn ccn 16970    Homeo chmeo 17460
This theorem is referenced by:  hmph  17483  hmphtop  17485  hmpher  17491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-hmeo 17462
  Copyright terms: Public domain W3C validator