HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopco Unicode version

Theorem hmopco 22603
Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopco  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  ->  ( T  o.  U )  e.  HrmOp )

Proof of Theorem hmopco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 22454 . . . 4  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
2 hmopf 22454 . . . 4  |-  ( U  e.  HrmOp  ->  U : ~H
--> ~H )
3 fco 5398 . . . 4  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( T  o.  U
) : ~H --> ~H )
41, 2, 3syl2an 463 . . 3  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  ->  ( T  o.  U ) : ~H --> ~H )
543adant3 975 . 2  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  ->  ( T  o.  U ) : ~H --> ~H )
6 fvco3 5596 . . . . . . . . . 10  |-  ( ( U : ~H --> ~H  /\  y  e.  ~H )  ->  ( ( T  o.  U ) `  y
)  =  ( T `
 ( U `  y ) ) )
72, 6sylan 457 . . . . . . . . 9  |-  ( ( U  e.  HrmOp  /\  y  e.  ~H )  ->  (
( T  o.  U
) `  y )  =  ( T `  ( U `  y ) ) )
87oveq2d 5874 . . . . . . . 8  |-  ( ( U  e.  HrmOp  /\  y  e.  ~H )  ->  (
x  .ih  ( ( T  o.  U ) `  y ) )  =  ( x  .ih  ( T `  ( U `  y ) ) ) )
98ad2ant2l 726 . . . . . . 7  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( x  .ih  ( T `
 ( U `  y ) ) ) )
10 simpll 730 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  T  e.  HrmOp
)
11 simprl 732 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  x  e.  ~H )
12 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( U : ~H --> ~H  /\  y  e.  ~H )  ->  ( U `  y
)  e.  ~H )
132, 12sylan 457 . . . . . . . . 9  |-  ( ( U  e.  HrmOp  /\  y  e.  ~H )  ->  ( U `  y )  e.  ~H )
1413ad2ant2l 726 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( U `  y )  e.  ~H )
15 hmop 22502 . . . . . . . 8  |-  ( ( T  e.  HrmOp  /\  x  e.  ~H  /\  ( U `
 y )  e. 
~H )  ->  (
x  .ih  ( T `  ( U `  y
) ) )  =  ( ( T `  x )  .ih  ( U `  y )
) )
1610, 11, 14, 15syl3anc 1182 . . . . . . 7  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( T `  ( U `  y )
) )  =  ( ( T `  x
)  .ih  ( U `  y ) ) )
17 simplr 731 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  U  e.  HrmOp
)
18 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
191, 18sylan 457 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  x  e.  ~H )  ->  ( T `  x )  e.  ~H )
2019ad2ant2r 727 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( T `  x )  e.  ~H )
21 simprr 733 . . . . . . . 8  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  y  e.  ~H )
22 hmop 22502 . . . . . . . 8  |-  ( ( U  e.  HrmOp  /\  ( T `  x )  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  x
)  .ih  ( U `  y ) )  =  ( ( U `  ( T `  x ) )  .ih  y ) )
2317, 20, 21, 22syl3anc 1182 . . . . . . 7  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  .ih  ( U `  y
) )  =  ( ( U `  ( T `  x )
)  .ih  y )
)
249, 16, 233eqtrd 2319 . . . . . 6  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( ( U `  ( T `  x )
)  .ih  y )
)
25 fvco3 5596 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( U  o.  T ) `  x
)  =  ( U `
 ( T `  x ) ) )
261, 25sylan 457 . . . . . . . 8  |-  ( ( T  e.  HrmOp  /\  x  e.  ~H )  ->  (
( U  o.  T
) `  x )  =  ( U `  ( T `  x ) ) )
2726oveq1d 5873 . . . . . . 7  |-  ( ( T  e.  HrmOp  /\  x  e.  ~H )  ->  (
( ( U  o.  T ) `  x
)  .ih  y )  =  ( ( U `
 ( T `  x ) )  .ih  y ) )
2827ad2ant2r 727 . . . . . 6  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( U  o.  T
) `  x )  .ih  y )  =  ( ( U `  ( T `  x )
)  .ih  y )
)
2924, 28eqtr4d 2318 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( ( ( U  o.  T ) `  x
)  .ih  y )
)
30293adantl3 1113 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( ( ( U  o.  T ) `  x
)  .ih  y )
)
31 fveq1 5524 . . . . . . 7  |-  ( ( T  o.  U )  =  ( U  o.  T )  ->  (
( T  o.  U
) `  x )  =  ( ( U  o.  T ) `  x ) )
3231oveq1d 5873 . . . . . 6  |-  ( ( T  o.  U )  =  ( U  o.  T )  ->  (
( ( T  o.  U ) `  x
)  .ih  y )  =  ( ( ( U  o.  T ) `
 x )  .ih  y ) )
33323ad2ant3 978 . . . . 5  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  ->  ( (
( T  o.  U
) `  x )  .ih  y )  =  ( ( ( U  o.  T ) `  x
)  .ih  y )
)
3433adantr 451 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T  o.  U
) `  x )  .ih  y )  =  ( ( ( U  o.  T ) `  x
)  .ih  y )
)
3530, 34eqtr4d 2318 . . 3  |-  ( ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( ( ( T  o.  U ) `  x
)  .ih  y )
)
3635ralrimivva 2635 . 2  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  ->  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( ( T  o.  U ) `  y
) )  =  ( ( ( T  o.  U ) `  x
)  .ih  y )
)
37 elhmop 22453 . 2  |-  ( ( T  o.  U )  e.  HrmOp 
<->  ( ( T  o.  U ) : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( ( T  o.  U ) `
 y ) )  =  ( ( ( T  o.  U ) `
 x )  .ih  y ) ) )
385, 36, 37sylanbrc 645 1  |-  ( ( T  e.  HrmOp  /\  U  e.  HrmOp  /\  ( T  o.  U )  =  ( U  o.  T ) )  ->  ( T  o.  U )  e.  HrmOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   ~Hchil 21499    .ih csp 21502   HrmOpcho 21530
This theorem is referenced by:  leopsq  22709  opsqrlem4  22723  opsqrlem6  22725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-hmop 22424
  Copyright terms: Public domain W3C validator