HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Unicode version

Theorem hmopidmchi 22731
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1  |-  T  e. 
HrmOp
hmopidmch.2  |-  ( T  o.  T )  =  T
Assertion
Ref Expression
hmopidmchi  |-  ran  T  e.  CH

Proof of Theorem hmopidmchi
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4  |-  T  e. 
HrmOp
2 hmoplin 22522 . . . 4  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
31, 2ax-mp 8 . . 3  |-  T  e. 
LinOp
43rnelshi 22639 . 2  |-  ran  T  e.  SH
5 eqid 2283 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
65hilxmet 21774 . . . . . . 7  |-  ( normh  o. 
-h  )  e.  ( * Met `  ~H )
7 eqid 2283 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
87methaus 18066 . . . . . . 7  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
96, 8mp1i 11 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
10 eqid 2283 . . . . . . . . . . . 12  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
1110, 5hhims 21751 . . . . . . . . . . . 12  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
1210, 11, 7hhlm 21778 . . . . . . . . . . 11  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
13 resss 4979 . . . . . . . . . . 11  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1412, 13eqsstri 3208 . . . . . . . . . 10  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1514ssbri 4065 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1615adantl 452 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) x )
177mopntopon 17985 . . . . . . . . . 10  |-  ( (
normh  o.  -h  )  e.  ( * Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
186, 17mp1i 11 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
193lnopfi 22549 . . . . . . . . . . . 12  |-  T : ~H
--> ~H
2019a1i 10 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T : ~H --> ~H )
2120feqmptd 5575 . . . . . . . . . 10  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T  =  ( y  e.  ~H  |->  ( T `  y ) ) )
22 hmopbdoptHIL 22568 . . . . . . . . . . . . 13  |-  ( T  e.  HrmOp  ->  T  e.  BndLinOp )
231, 22ax-mp 8 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
24 lnopcnbd 22616 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( T  e.  ConOp 
<->  T  e.  BndLinOp ) )
253, 24ax-mp 8 . . . . . . . . . . . 12  |-  ( T  e.  ConOp 
<->  T  e.  BndLinOp )
2623, 25mpbir 200 . . . . . . . . . . 11  |-  T  e. 
ConOp
275, 7hhcno 22484 . . . . . . . . . . 11  |-  ConOp  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) )
2826, 27eleqtri 2355 . . . . . . . . . 10  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) )
2921, 28syl6eqelr 2372 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( T `  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3018cnmptid 17355 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  y )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3110hhnv 21744 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3210hhvs 21749 . . . . . . . . . . 11  |-  -h  =  ( -v `  <. <.  +h  ,  .h  >. ,  normh >. )
3311, 7, 32vmcn 21272 . . . . . . . . . 10  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  -h  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( MetOpen
`  ( normh  o.  -h  ) ) ) )
3431, 33mp1i 11 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  -h  e.  (
( ( MetOpen `  ( normh  o.  -h  ) ) 
tX  ( MetOpen `  ( normh  o.  -h  ) ) )  Cn  ( MetOpen `  ( normh  o.  -h  )
) ) )
3518, 29, 30, 34cnmpt12f 17360 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3616, 35lmcn 17033 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  x ) )
37 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ran  T )
384shssii 21792 . . . . . . . . . . . . . 14  |-  ran  T  C_ 
~H
39 fss 5397 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  ran  T  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 643 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ~H )
41 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ~H  /\  k  e.  NN )  ->  ( f `  k
)  e.  ~H )
4240, 41sylan 457 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ~H )
43 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
44 id 19 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  y  =  ( f `  k ) )
4543, 44oveq12d 5876 . . . . . . . . . . . . 13  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 ( f `  k ) )  -h  ( f `  k
) ) )
46 eqid 2283 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  =  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )
47 ovex 5883 . . . . . . . . . . . . 13  |-  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) )  e. 
_V
4845, 46, 47fvmpt 5602 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
4942, 48syl 15 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
50 ffn 5389 . . . . . . . . . . . . . . . 16  |-  ( T : ~H --> ~H  ->  T  Fn  ~H )
5119, 50ax-mp 8 . . . . . . . . . . . . . . 15  |-  T  Fn  ~H
52 fveq2 5525 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  ( T `  y )  =  ( T `  ( T `  x ) ) )
53 id 19 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  y  =  ( T `  x ) )
5452, 53eqeq12d 2297 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( T `  x )  ->  (
( T `  y
)  =  y  <->  ( T `  ( T `  x
) )  =  ( T `  x ) ) )
5554ralrn 5668 . . . . . . . . . . . . . . 15  |-  ( T  Fn  ~H  ->  ( A. y  e.  ran  T ( T `  y
)  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) ) )
5651, 55ax-mp 8 . . . . . . . . . . . . . 14  |-  ( A. y  e.  ran  T ( T `  y )  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) )
57 hmopidmch.2 . . . . . . . . . . . . . . . 16  |-  ( T  o.  T )  =  T
5857fveq1i 5526 . . . . . . . . . . . . . . 15  |-  ( ( T  o.  T ) `
 x )  =  ( T `  x
)
5919, 19hocoi 22344 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( T  o.  T
) `  x )  =  ( T `  ( T `  x ) ) )
6058, 59syl5reqr 2330 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( T `  ( T `  x ) )  =  ( T `  x
) )
6156, 60mprgbir 2613 . . . . . . . . . . . . 13  |-  A. y  e.  ran  T ( T `
 y )  =  y
62 ffvelrn 5663 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( f `  k )  e.  ran  T )
6362adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ran  T )
6443, 44eqeq12d 2297 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  =  y  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6564rspccv 2881 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  T ( T `  y )  =  y  ->  (
( f `  k
)  e.  ran  T  ->  ( T `  (
f `  k )
)  =  ( f `
 k ) ) )
6661, 63, 65mpsyl 59 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  =  ( f `  k
) )
6766, 42eqeltrd 2357 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  e. 
~H )
68 hvsubeq0 21647 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
f `  k )
)  e.  ~H  /\  ( f `  k
)  e.  ~H )  ->  ( ( ( T `
 ( f `  k ) )  -h  ( f `  k
) )  =  0h  <->  ( T `  ( f `
 k ) )  =  ( f `  k ) ) )
6967, 42, 68syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( T `  ( f `  k
) )  -h  (
f `  k )
)  =  0h  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
7066, 69mpbird 223 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( T `  (
f `  k )
)  -h  ( f `
 k ) )  =  0h )
7149, 70eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  0h )
72 fvco3 5596 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) ) `  ( f `  k
) ) )
7372adantlr 695 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  ( f `
 k ) ) )
74 ax-hv0cl 21583 . . . . . . . . . . . . 13  |-  0h  e.  ~H
7574elexi 2797 . . . . . . . . . . . 12  |-  0h  e.  _V
7675fvconst2 5729 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7776adantl 452 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7871, 73, 773eqtr4d 2325 . . . . . . . . 9  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( NN  X.  { 0h } ) `  k
) )
7978ralrimiva 2626 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) `  k )  =  ( ( NN  X.  { 0h } ) `  k
) )
80 ovex 5883 . . . . . . . . . . 11  |-  ( ( T `  y )  -h  y )  e. 
_V
8180, 46fnmpti 5372 . . . . . . . . . 10  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  Fn  ~H
82 fnfco 5407 . . . . . . . . . 10  |-  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y
) )  Fn  ~H  /\  f : NN --> ~H )  ->  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN )
8381, 40, 82sylancr 644 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  Fn  NN )
8475fconst 5427 . . . . . . . . . 10  |-  ( NN 
X.  { 0h }
) : NN --> { 0h }
85 ffn 5389 . . . . . . . . . 10  |-  ( ( NN  X.  { 0h } ) : NN --> { 0h }  ->  ( NN  X.  { 0h }
)  Fn  NN )
8684, 85ax-mp 8 . . . . . . . . 9  |-  ( NN 
X.  { 0h }
)  Fn  NN
87 eqfnfv 5622 . . . . . . . . 9  |-  ( ( ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN  /\  ( NN  X.  { 0h } )  Fn  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8883, 86, 87sylancl 643 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8979, 88mpbird 223 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } ) )
90 vex 2791 . . . . . . . . . 10  |-  x  e. 
_V
9190hlimveci 21769 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  x  e.  ~H )
9291adantl 452 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ~H )
93 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  x  ->  ( T `  y )  =  ( T `  x ) )
94 id 19 . . . . . . . . . 10  |-  ( y  =  x  ->  y  =  x )
9593, 94oveq12d 5876 . . . . . . . . 9  |-  ( y  =  x  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 x )  -h  x ) )
96 ovex 5883 . . . . . . . . 9  |-  ( ( T `  x )  -h  x )  e. 
_V
9795, 46, 96fvmpt 5602 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  x
)  =  ( ( T `  x )  -h  x ) )
9892, 97syl 15 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) ) `
 x )  =  ( ( T `  x )  -h  x
) )
9936, 89, 983brtr3d 4052 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( T `  x )  -h  x ) )
10074a1i 10 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  0h  e.  ~H )
101 1z 10053 . . . . . . . 8  |-  1  e.  ZZ
102101a1i 10 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  1  e.  ZZ )
103 nnuz 10263 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
104103lmconst 16991 . . . . . . 7  |-  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )  /\  0h  e.  ~H  /\  1  e.  ZZ )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) 0h )
10518, 100, 102, 104syl3anc 1182 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) 0h )
1069, 99, 105lmmo 17108 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( T `
 x )  -h  x )  =  0h )
10719ffvelrni 5664 . . . . . . 7  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
10892, 107syl 15 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ~H )
109 hvsubeq0 21647 . . . . . 6  |-  ( ( ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( T `
 x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
110108, 92, 109syl2anc 642 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( T `  x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
111106, 110mpbid 201 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  =  x )
112 fnfvelrn 5662 . . . . 5  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ran  T
)
11351, 92, 112sylancr 644 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ran  T )
114111, 113eqeltrrd 2358 . . 3  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
115114gen2 1534 . 2  |-  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
116 isch2 21803 . 2  |-  ( ran 
T  e.  CH  <->  ( ran  T  e.  SH  /\  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T ) ) )
1174, 115, 116mpbir2an 886 1  |-  ran  T  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   {csn 3640   <.cop 3643   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ran crn 4690    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   1c1 8738   NNcn 9746   ZZcz 10024   * Metcxmt 16369   MetOpencmopn 16372  TopOnctopon 16632    Cn ccn 16954   ~~> tclm 16956   Hauscha 17036    tX ctx 17255   NrmCVeccnv 21140   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503   0hc0v 21504    -h cmv 21505    ~~>v chli 21507   SHcsh 21508   CHcch 21509   ConOpccop 21526   LinOpclo 21527   BndLinOpcbo 21528   HrmOpcho 21530
This theorem is referenced by:  hmopidmpji  22732  hmopidmch  22733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-dc 8072  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-t1 17042  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-fcls 17636  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-lno 21322  df-nmoo 21323  df-blo 21324  df-0o 21325  df-ph 21391  df-cbn 21442  df-hlo 21465  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-pjh 21974  df-h0op 22328  df-nmop 22419  df-cnop 22420  df-lnop 22421  df-bdop 22422  df-unop 22423  df-hmop 22424
  Copyright terms: Public domain W3C validator