MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Unicode version

Theorem hmphindis 17786
Description: Homeomorphisms preserve topological indiscretion. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1  |-  X  = 
U. J
Assertion
Ref Expression
hmphindis  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 3792 . . 3  |-  { (/) }  =  { (/) ,  (/) }
2 indislem 17023 . . . . . . 7  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
3 preq2 3848 . . . . . . . 8  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
,  (/) } )
43, 1syl6eqr 2458 . . . . . . 7  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
} )
52, 4syl5eqr 2454 . . . . . 6  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  A }  =  { (/)
} )
65breq2d 4188 . . . . 5  |-  ( (  _I  `  A )  =  (/)  ->  ( J  ~=  { (/) ,  A } 
<->  J  ~=  { (/) } ) )
76biimpac 473 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  ~=  {
(/) } )
8 hmph0 17784 . . . 4  |-  ( J  ~=  { (/) }  <->  J  =  { (/) } )
97, 8sylib 189 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) } )
109unieqd 3990 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  U. J  =  U. { (/) } )
11 hmphdis.1 . . . . 5  |-  X  = 
U. J
12 0ex 4303 . . . . . . 7  |-  (/)  e.  _V
1312unisn 3995 . . . . . 6  |-  U. { (/)
}  =  (/)
1413eqcomi 2412 . . . . 5  |-  (/)  =  U. { (/) }
1510, 11, 143eqtr4g 2465 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  X  =  (/) )
1615preq2d 3854 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  { (/) ,  X }  =  { (/)
,  (/) } )
171, 9, 163eqtr4a 2466 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) ,  X }
)
18 hmphen 17774 . . . . . 6  |-  ( J  ~=  { (/) ,  A }  ->  J  ~~  { (/)
,  A } )
1918adantr 452 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  {
(/) ,  A }
)
20 necom 2652 . . . . . . . 8  |-  ( (  _I  `  A )  =/=  (/)  <->  (/)  =/=  (  _I 
`  A ) )
21 fvex 5705 . . . . . . . . 9  |-  (  _I 
`  A )  e. 
_V
22 pr2nelem 7848 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (  _I  `  A )  e. 
_V  /\  (/)  =/=  (  _I  `  A ) )  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2312, 21, 22mp3an12 1269 . . . . . . . 8  |-  ( (/)  =/=  (  _I  `  A
)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2420, 23sylbi 188 . . . . . . 7  |-  ( (  _I  `  A )  =/=  (/)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2524adantl 453 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  (  _I  `  A
) }  ~~  2o )
262, 25syl5eqbrr 4210 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  A }  ~~  2o )
27 entr 7122 . . . . 5  |-  ( ( J  ~~  { (/) ,  A }  /\  { (/)
,  A }  ~~  2o )  ->  J  ~~  2o )
2819, 26, 27syl2anc 643 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  2o )
29 hmphtop1 17768 . . . . . . 7  |-  ( J  ~=  { (/) ,  A }  ->  J  e.  Top )
3029adantr 452 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e. 
Top )
3111toptopon 16957 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3230, 31sylib 189 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e.  (TopOn `  X )
)
33 en2top 17009 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3432, 33syl 16 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J 
~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3528, 34mpbid 202 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )
3635simpld 446 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  =  { (/) ,  X }
)
3717, 36pm2.61dane 2649 1  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   _Vcvv 2920   (/)c0 3592   {csn 3778   {cpr 3779   U.cuni 3979   class class class wbr 4176    _I cid 4457   ` cfv 5417   2oc2o 6681    ~~ cen 7069   Topctop 16917  TopOnctopon 16918    ~= chmph 17743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-1o 6687  df-2o 6688  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-card 7786  df-top 16922  df-topon 16925  df-cn 17249  df-hmeo 17744  df-hmph 17745
  Copyright terms: Public domain W3C validator