HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ho2coi Structured version   Unicode version

Theorem ho2coi 23284
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1  |-  R : ~H
--> ~H
hods.2  |-  S : ~H
--> ~H
hods.3  |-  T : ~H
--> ~H
Assertion
Ref Expression
ho2coi  |-  ( A  e.  ~H  ->  (
( ( R  o.  S )  o.  T
) `  A )  =  ( R `  ( S `  ( T `
 A ) ) ) )

Proof of Theorem ho2coi
StepHypRef Expression
1 hods.1 . . . 4  |-  R : ~H
--> ~H
2 hods.2 . . . 4  |-  S : ~H
--> ~H
31, 2hocofi 23269 . . 3  |-  ( R  o.  S ) : ~H --> ~H
4 hods.3 . . 3  |-  T : ~H
--> ~H
53, 4hocoi 23267 . 2  |-  ( A  e.  ~H  ->  (
( ( R  o.  S )  o.  T
) `  A )  =  ( ( R  o.  S ) `  ( T `  A ) ) )
64ffvelrni 5869 . . 3  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
71, 2hocoi 23267 . . 3  |-  ( ( T `  A )  e.  ~H  ->  (
( R  o.  S
) `  ( T `  A ) )  =  ( R `  ( S `  ( T `  A ) ) ) )
86, 7syl 16 . 2  |-  ( A  e.  ~H  ->  (
( R  o.  S
) `  ( T `  A ) )  =  ( R `  ( S `  ( T `  A ) ) ) )
95, 8eqtrd 2468 1  |-  ( A  e.  ~H  ->  (
( ( R  o.  S )  o.  T
) `  A )  =  ( R `  ( S `  ( T `
 A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    o. ccom 4882   -->wf 5450   ` cfv 5454   ~Hchil 22422
This theorem is referenced by:  pj2cocli  23708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462
  Copyright terms: Public domain W3C validator