HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ho2times Unicode version

Theorem ho2times 22399
Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
ho2times  |-  ( T : ~H --> ~H  ->  ( 2  .op  T )  =  ( T  +op  T ) )

Proof of Theorem ho2times
StepHypRef Expression
1 df-2 9804 . . . 4  |-  2  =  ( 1  +  1 )
21oveq1i 5868 . . 3  |-  ( 2 
.op  T )  =  ( ( 1  +  1 )  .op  T
)
3 ax-1cn 8795 . . . 4  |-  1  e.  CC
4 hoadddir 22384 . . . 4  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  T : ~H --> ~H )  -> 
( ( 1  +  1 )  .op  T
)  =  ( ( 1  .op  T ) 
+op  ( 1  .op 
T ) ) )
53, 3, 4mp3an12 1267 . . 3  |-  ( T : ~H --> ~H  ->  ( ( 1  +  1 )  .op  T )  =  ( ( 1 
.op  T )  +op  ( 1  .op  T
) ) )
62, 5syl5eq 2327 . 2  |-  ( T : ~H --> ~H  ->  ( 2  .op  T )  =  ( ( 1 
.op  T )  +op  ( 1  .op  T
) ) )
7 hoadddi 22383 . . . 4  |-  ( ( 1  e.  CC  /\  T : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( 1  .op  ( T  +op  T ) )  =  ( ( 1 
.op  T )  +op  ( 1  .op  T
) ) )
83, 7mp3an1 1264 . . 3  |-  ( ( T : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( 1  .op  ( T  +op  T ) )  =  ( ( 1 
.op  T )  +op  ( 1  .op  T
) ) )
98anidms 626 . 2  |-  ( T : ~H --> ~H  ->  ( 1  .op  ( T 
+op  T ) )  =  ( ( 1 
.op  T )  +op  ( 1  .op  T
) ) )
10 hoaddcl 22338 . . . 4  |-  ( ( T : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( T  +op  T
) : ~H --> ~H )
1110anidms 626 . . 3  |-  ( T : ~H --> ~H  ->  ( T  +op  T ) : ~H --> ~H )
12 homulid2 22380 . . 3  |-  ( ( T  +op  T ) : ~H --> ~H  ->  ( 1  .op  ( T 
+op  T ) )  =  ( T  +op  T ) )
1311, 12syl 15 . 2  |-  ( T : ~H --> ~H  ->  ( 1  .op  ( T 
+op  T ) )  =  ( T  +op  T ) )
146, 9, 133eqtr2d 2321 1  |-  ( T : ~H --> ~H  ->  ( 2  .op  T )  =  ( T  +op  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   -->wf 5251  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740   2c2 9795   ~Hchil 21499    +op chos 21518    .op chot 21519
This theorem is referenced by:  opsqrlem6  22725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-1cn 8795  ax-addcl 8797  ax-hilex 21579  ax-hfvadd 21580  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvdistr1 21588  ax-hvdistr2 21589
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-2 9804  df-hosum 22310  df-homul 22311
  Copyright terms: Public domain W3C validator