HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Unicode version

Theorem hoadddi 23306
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )

Proof of Theorem hoadddi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  A  e.  CC )
2 ffvelrn 5868 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
323ad2antl2 1120 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( T `  x )  e.  ~H )
4 ffvelrn 5868 . . . . . . 7  |-  ( ( U : ~H --> ~H  /\  x  e.  ~H )  ->  ( U `  x
)  e.  ~H )
543ad2antl3 1121 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( U `  x )  e.  ~H )
6 ax-hvdistr1 22511 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T `  x )  e.  ~H  /\  ( U `  x )  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x
) ) )  =  ( ( A  .h  ( T `  x ) )  +h  ( A  .h  ( U `  x ) ) ) )
71, 3, 5, 6syl3anc 1184 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x )
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( A  .h  ( U `  x ) ) ) )
8 hosval 23243 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( T  +op  U ) `  x )  =  ( ( T `
 x )  +h  ( U `  x
) ) )
98oveq2d 6097 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( A  .h  (
( T  +op  U
) `  x )
)  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
1093expa 1153 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  (
( T `  x
)  +h  ( U `
 x ) ) ) )
11103adantl1 1113 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
12 homval 23244 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
13123expa 1153 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
14133adantl3 1115 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
15 homval 23244 . . . . . . . 8  |-  ( ( A  e.  CC  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  U ) `  x )  =  ( A  .h  ( U `  x ) ) )
16153expa 1153 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
17163adantl2 1114 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
1814, 17oveq12d 6099 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) )  =  ( ( A  .h  ( T `
 x ) )  +h  ( A  .h  ( U `  x ) ) ) )
197, 11, 183eqtr4d 2478 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
20 hoaddcl 23261 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( T  +op  U
) : ~H --> ~H )
2120anim2i 553 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  e.  CC  /\  ( T 
+op  U ) : ~H --> ~H ) )
22213impb 1149 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )
)
23 homval 23244 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( A  .h  ( ( T  +op  U ) `  x ) ) )
24233expa 1153 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
2522, 24sylan 458 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
26 homulcl 23262 . . . . . . 7  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
27 homulcl 23262 . . . . . . 7  |-  ( ( A  e.  CC  /\  U : ~H --> ~H )  ->  ( A  .op  U
) : ~H --> ~H )
2826, 27anim12i 550 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H ) )
29283impdi 1239 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )
)
30 hosval 23243 . . . . . 6  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A 
.op  T )  +op  ( A  .op  U ) ) `  x )  =  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) ) )
31303expa 1153 . . . . 5  |-  ( ( ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3229, 31sylan 458 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3319, 25, 323eqtr4d 2478 . . 3  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x ) )
3433ralrimiva 2789 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  A. x  e.  ~H  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
) )
35 homulcl 23262 . . . . 5  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
3620, 35sylan2 461 . . . 4  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  .op  ( T  +op  U
) ) : ~H --> ~H )
37363impb 1149 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
38 hoaddcl 23261 . . . . 5  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
3926, 27, 38syl2an 464 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T )  +op  ( A  .op  U ) ) : ~H --> ~H )
40393impdi 1239 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
41 hoeq 23263 . . 3  |-  ( ( ( A  .op  ( T  +op  U ) ) : ~H --> ~H  /\  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4237, 40, 41syl2anc 643 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4334, 42mpbid 202 1  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   ~Hchil 22422    +h cva 22423    .h csm 22424    +op chos 22441    .op chot 22442
This theorem is referenced by:  hosubdi  23311  honegdi  23312  ho2times  23322  opsqrlem6  23648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-hilex 22502  ax-hfvadd 22503  ax-hfvmul 22508  ax-hvdistr1 22511
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-hosum 23233  df-homul 23234
  Copyright terms: Public domain W3C validator