HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocofni Unicode version

Theorem hocofni 22347
Description: Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1  |-  S : ~H
--> ~H
hoeq.2  |-  T : ~H
--> ~H
Assertion
Ref Expression
hocofni  |-  ( S  o.  T )  Fn 
~H

Proof of Theorem hocofni
StepHypRef Expression
1 hoeq.1 . . 3  |-  S : ~H
--> ~H
2 hoeq.2 . . 3  |-  T : ~H
--> ~H
31, 2hocofi 22346 . 2  |-  ( S  o.  T ) : ~H --> ~H
4 ffn 5389 . 2  |-  ( ( S  o.  T ) : ~H --> ~H  ->  ( S  o.  T )  Fn  ~H )
53, 4ax-mp 8 1  |-  ( S  o.  T )  Fn 
~H
Colors of variables: wff set class
Syntax hints:    o. ccom 4693    Fn wfn 5250   -->wf 5251   ~Hchil 21499
This theorem is referenced by:  pjcofni  22742  pjinvari  22771  pj3si  22787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator