HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocofni Unicode version

Theorem hocofni 22363
Description: Functionality of composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1  |-  S : ~H
--> ~H
hoeq.2  |-  T : ~H
--> ~H
Assertion
Ref Expression
hocofni  |-  ( S  o.  T )  Fn 
~H

Proof of Theorem hocofni
StepHypRef Expression
1 hoeq.1 . . 3  |-  S : ~H
--> ~H
2 hoeq.2 . . 3  |-  T : ~H
--> ~H
31, 2hocofi 22362 . 2  |-  ( S  o.  T ) : ~H --> ~H
4 ffn 5405 . 2  |-  ( ( S  o.  T ) : ~H --> ~H  ->  ( S  o.  T )  Fn  ~H )
53, 4ax-mp 8 1  |-  ( S  o.  T )  Fn 
~H
Colors of variables: wff set class
Syntax hints:    o. ccom 4709    Fn wfn 5266   -->wf 5267   ~Hchil 21515
This theorem is referenced by:  pjcofni  22758  pjinvari  22787  pj3si  22803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275
  Copyright terms: Public domain W3C validator