HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hocoi Structured version   Unicode version

Theorem hocoi 23272
Description: Composition of Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1  |-  S : ~H
--> ~H
hoeq.2  |-  T : ~H
--> ~H
Assertion
Ref Expression
hocoi  |-  ( A  e.  ~H  ->  (
( S  o.  T
) `  A )  =  ( S `  ( T `  A ) ) )

Proof of Theorem hocoi
StepHypRef Expression
1 hoeq.2 . 2  |-  T : ~H
--> ~H
2 fvco3 5803 . 2  |-  ( ( T : ~H --> ~H  /\  A  e.  ~H )  ->  ( ( S  o.  T ) `  A
)  =  ( S `
 ( T `  A ) ) )
31, 2mpan 653 1  |-  ( A  e.  ~H  ->  (
( S  o.  T
) `  A )  =  ( S `  ( T `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    o. ccom 4885   -->wf 5453   ` cfv 5457   ~Hchil 22427
This theorem is referenced by:  hococli  23273  hocadddiri  23287  hocsubdiri  23288  ho2coi  23289  ho0coi  23296  hoid1i  23297  hoid1ri  23298  hoddii  23497  lnopcoi  23511  lnopco0i  23512  nmopcoi  23603  adjcoi  23608  nmopcoadji  23609  hmopidmchi  23659  hmopidmpji  23660  pjsdii  23663  pjddii  23664  pjcoi  23666  pjcohocli  23711  pjadj2coi  23712  pj3lem1  23714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465
  Copyright terms: Public domain W3C validator