Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof1fval Structured version   Unicode version

Theorem hof1fval 14350
 Description: The object part of the Hom functor is the f operation, which is just a functionalized version of . That is, it is a two argument function, which maps to the set of morphisms from to . (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m HomF
hofval.c
Assertion
Ref Expression
hof1fval f

Proof of Theorem hof1fval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 HomF
2 hofval.c . . 3
3 eqid 2436 . . 3
4 eqid 2436 . . 3
5 eqid 2436 . . 3 comp comp
61, 2, 3, 4, 5hofval 14349 . 2 f comp comp
7 fvex 5742 . . 3 f
8 fvex 5742 . . . . 5
98, 8xpex 4990 . . . 4
109, 9mpt2ex 6425 . . 3 comp comp
117, 10op1std 6357 . 2 f comp comp f
126, 11syl 16 1 f
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cop 3817   cmpt 4266   cxp 4876  cfv 5454  (class class class)co 6081   cmpt2 6083  c1st 6347  c2nd 6348  cbs 13469   chom 13540  compcco 13541  ccat 13889   f chomf 13891  HomFchof 14345 This theorem is referenced by:  hof1  14351 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-hof 14347
 Copyright terms: Public domain W3C validator