MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2fval Unicode version

Theorem hof2fval 14029
Description: The morphism part of the Hom functor, for morphisms  <. f ,  g >. : <. X ,  Y >. --> <. Z ,  W >. (which since the first argument is contravariant means morphisms  f : Z --> X and  g : Y --> W), yields a function (a morphism of  SetCat) mapping  h : X --> Y to  g  o.  h  o.  f : Z --> W. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m  |-  M  =  (HomF
`  C )
hofval.c  |-  ( ph  ->  C  e.  Cat )
hof1.b  |-  B  =  ( Base `  C
)
hof1.h  |-  H  =  (  Hom  `  C
)
hof1.x  |-  ( ph  ->  X  e.  B )
hof1.y  |-  ( ph  ->  Y  e.  B )
hof2.z  |-  ( ph  ->  Z  e.  B )
hof2.w  |-  ( ph  ->  W  e.  B )
hof2.o  |-  .x.  =  (comp `  C )
Assertion
Ref Expression
hof2fval  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. )  =  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W )  |->  ( h  e.  ( X H Y )  |->  ( ( g ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) f ) ) ) )
Distinct variable groups:    f, g, h, B    ph, f, g, h    C, f, g, h   
f, H, g, h   
f, W, g, h    .x. , f, g, h    f, X, g, h    f, Y, g, h    f, Z, g, h
Allowed substitution hints:    M( f, g, h)

Proof of Theorem hof2fval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . . 4  |-  M  =  (HomF
`  C )
2 hofval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
3 hof1.b . . . 4  |-  B  =  ( Base `  C
)
4 hof1.h . . . 4  |-  H  =  (  Hom  `  C
)
5 hof2.o . . . 4  |-  .x.  =  (comp `  C )
61, 2, 3, 4, 5hofval 14026 . . 3  |-  ( ph  ->  M  =  <. (  Homf  `  C ) ,  ( x  e.  ( B  X.  B ) ,  y  e.  ( B  X.  B )  |->  ( f  e.  ( ( 1st `  y ) H ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) H ( 2nd `  y ) )  |->  ( h  e.  ( H `  x
)  |->  ( ( g ( x  .x.  ( 2nd `  y ) ) h ) ( <.
( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) ) ) >. )
7 fvex 5539 . . . 4  |-  (  Homf  `  C )  e.  _V
8 fvex 5539 . . . . . . 7  |-  ( Base `  C )  e.  _V
93, 8eqeltri 2353 . . . . . 6  |-  B  e. 
_V
109, 9xpex 4801 . . . . 5  |-  ( B  X.  B )  e. 
_V
1110, 10mpt2ex 6198 . . . 4  |-  ( x  e.  ( B  X.  B ) ,  y  e.  ( B  X.  B )  |->  ( f  e.  ( ( 1st `  y ) H ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( h  e.  ( H `
 x )  |->  ( ( g ( x 
.x.  ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) ) )  e.  _V
127, 11op2ndd 6131 . . 3  |-  ( M  =  <. (  Homf  `  C ) ,  ( x  e.  ( B  X.  B
) ,  y  e.  ( B  X.  B
)  |->  ( f  e.  ( ( 1st `  y
) H ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) H ( 2nd `  y
) )  |->  ( h  e.  ( H `  x )  |->  ( ( g ( x  .x.  ( 2nd `  y ) ) h ) (
<. ( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) ) ) >.  ->  ( 2nd `  M )  =  ( x  e.  ( B  X.  B ) ,  y  e.  ( B  X.  B )  |->  ( f  e.  ( ( 1st `  y ) H ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) H ( 2nd `  y ) )  |->  ( h  e.  ( H `  x
)  |->  ( ( g ( x  .x.  ( 2nd `  y ) ) h ) ( <.
( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) ) ) )
136, 12syl 15 . 2  |-  ( ph  ->  ( 2nd `  M
)  =  ( x  e.  ( B  X.  B ) ,  y  e.  ( B  X.  B )  |->  ( f  e.  ( ( 1st `  y ) H ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x
) H ( 2nd `  y ) )  |->  ( h  e.  ( H `
 x )  |->  ( ( g ( x 
.x.  ( 2nd `  y
) ) h ) ( <. ( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) ) ) )
14 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  y  =  <. Z ,  W >. )
1514fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st `  y )  =  ( 1st `  <. Z ,  W >. ) )
16 hof2.z . . . . . . 7  |-  ( ph  ->  Z  e.  B )
17 hof2.w . . . . . . 7  |-  ( ph  ->  W  e.  B )
18 op1stg 6132 . . . . . . 7  |-  ( ( Z  e.  B  /\  W  e.  B )  ->  ( 1st `  <. Z ,  W >. )  =  Z )
1916, 17, 18syl2anc 642 . . . . . 6  |-  ( ph  ->  ( 1st `  <. Z ,  W >. )  =  Z )
2019adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st ` 
<. Z ,  W >. )  =  Z )
2115, 20eqtrd 2315 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st `  y )  =  Z )
22 simprl 732 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  x  =  <. X ,  Y >. )
2322fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st `  x )  =  ( 1st `  <. X ,  Y >. ) )
24 hof1.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
25 hof1.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
26 op1stg 6132 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
2724, 25, 26syl2anc 642 . . . . . 6  |-  ( ph  ->  ( 1st `  <. X ,  Y >. )  =  X )
2827adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st ` 
<. X ,  Y >. )  =  X )
2923, 28eqtrd 2315 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 1st `  x )  =  X )
3021, 29oveq12d 5876 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( ( 1st `  y ) H ( 1st `  x
) )  =  ( Z H X ) )
3122fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd `  x )  =  ( 2nd `  <. X ,  Y >. ) )
32 op2ndg 6133 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
3324, 25, 32syl2anc 642 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
3433adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd ` 
<. X ,  Y >. )  =  Y )
3531, 34eqtrd 2315 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd `  x )  =  Y )
3614fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd `  y )  =  ( 2nd `  <. Z ,  W >. ) )
37 op2ndg 6133 . . . . . . 7  |-  ( ( Z  e.  B  /\  W  e.  B )  ->  ( 2nd `  <. Z ,  W >. )  =  W )
3816, 17, 37syl2anc 642 . . . . . 6  |-  ( ph  ->  ( 2nd `  <. Z ,  W >. )  =  W )
3938adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd ` 
<. Z ,  W >. )  =  W )
4036, 39eqtrd 2315 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( 2nd `  y )  =  W )
4135, 40oveq12d 5876 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( ( 2nd `  x ) H ( 2nd `  y
) )  =  ( Y H W ) )
4222fveq2d 5529 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( H `  x )  =  ( H `  <. X ,  Y >. ) )
43 df-ov 5861 . . . . 5  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
4442, 43syl6eqr 2333 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( H `  x )  =  ( X H Y ) )
4521, 29opeq12d 3804 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  <. ( 1st `  y ) ,  ( 1st `  x )
>.  =  <. Z ,  X >. )
4645, 40oveq12d 5876 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( <. ( 1st `  y ) ,  ( 1st `  x
) >.  .x.  ( 2nd `  y ) )  =  ( <. Z ,  X >.  .x.  W ) )
4722, 40oveq12d 5876 . . . . . 6  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( x  .x.  ( 2nd `  y
) )  =  (
<. X ,  Y >.  .x. 
W ) )
4847oveqd 5875 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( g
( x  .x.  ( 2nd `  y ) ) h )  =  ( g ( <. X ,  Y >.  .x.  W )
h ) )
49 eqidd 2284 . . . . 5  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  f  =  f )
5046, 48, 49oveq123d 5879 . . . 4  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( (
g ( x  .x.  ( 2nd `  y ) ) h ) (
<. ( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f )  =  ( ( g ( <. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) f ) )
5144, 50mpteq12dv 4098 . . 3  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( h  e.  ( H `  x
)  |->  ( ( g ( x  .x.  ( 2nd `  y ) ) h ) ( <.
( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) )  =  ( h  e.  ( X H Y ) 
|->  ( ( g (
<. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) f ) ) )
5230, 41, 51mpt2eq123dv 5910 . 2  |-  ( (
ph  /\  ( x  =  <. X ,  Y >.  /\  y  =  <. Z ,  W >. )
)  ->  ( f  e.  ( ( 1st `  y
) H ( 1st `  x ) ) ,  g  e.  ( ( 2nd `  x ) H ( 2nd `  y
) )  |->  ( h  e.  ( H `  x )  |->  ( ( g ( x  .x.  ( 2nd `  y ) ) h ) (
<. ( 1st `  y
) ,  ( 1st `  x ) >.  .x.  ( 2nd `  y ) ) f ) ) )  =  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W )  |->  ( h  e.  ( X H Y )  |->  ( ( g ( <. X ,  Y >.  .x.  W ) h ) ( <. Z ,  X >.  .x.  W )
f ) ) ) )
53 opelxpi 4721 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
5424, 25, 53syl2anc 642 . 2  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
55 opelxpi 4721 . . 3  |-  ( ( Z  e.  B  /\  W  e.  B )  -> 
<. Z ,  W >.  e.  ( B  X.  B
) )
5616, 17, 55syl2anc 642 . 2  |-  ( ph  -> 
<. Z ,  W >.  e.  ( B  X.  B
) )
57 ovex 5883 . . . 4  |-  ( Z H X )  e. 
_V
58 ovex 5883 . . . 4  |-  ( Y H W )  e. 
_V
5957, 58mpt2ex 6198 . . 3  |-  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W )  |->  ( h  e.  ( X H Y )  |->  ( ( g ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) f ) ) )  e.  _V
6059a1i 10 . 2  |-  ( ph  ->  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W ) 
|->  ( h  e.  ( X H Y ) 
|->  ( ( g (
<. X ,  Y >.  .x. 
W ) h ) ( <. Z ,  X >.  .x.  W ) f ) ) )  e. 
_V )
6113, 52, 54, 56, 60ovmpt2d 5975 1  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  M
) <. Z ,  W >. )  =  ( f  e.  ( Z H X ) ,  g  e.  ( Y H W )  |->  ( h  e.  ( X H Y )  |->  ( ( g ( <. X ,  Y >.  .x.  W )
h ) ( <. Z ,  X >.  .x. 
W ) f ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643    e. cmpt 4077    X. cxp 4687   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566    Homf chomf 13568  HomFchof 14022
This theorem is referenced by:  hof2val  14030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-hof 14024
  Copyright terms: Public domain W3C validator