Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hof2val Structured version   Unicode version

Theorem hof2val 14355
 Description: The morphism part of the Hom functor, for morphisms (which since the first argument is contravariant means morphisms and ), yields a function (a morphism of ) mapping to . (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m HomF
hofval.c
hof1.b
hof1.h
hof1.x
hof1.y
hof2.z
hof2.w
hof2.o comp
hof2.f
hof2.g
Assertion
Ref Expression
hof2val
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem hof2val
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . . 3 HomF
2 hofval.c . . 3
3 hof1.b . . 3
4 hof1.h . . 3
5 hof1.x . . 3
6 hof1.y . . 3
7 hof2.z . . 3
8 hof2.w . . 3
9 hof2.o . . 3 comp
101, 2, 3, 4, 5, 6, 7, 8, 9hof2fval 14354 . 2
11 simplrr 739 . . . . 5
1211oveq1d 6098 . . . 4
13 simplrl 738 . . . 4
1412, 13oveq12d 6101 . . 3
1514mpteq2dva 4297 . 2
16 hof2.f . 2
17 hof2.g . 2
18 ovex 6108 . . . 4
1918mptex 5968 . . 3
2019a1i 11 . 2
2110, 15, 16, 17, 20ovmpt2d 6203 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  cvv 2958  cop 3819   cmpt 4268  cfv 5456  (class class class)co 6083  c2nd 6350  cbs 13471   chom 13542  compcco 13543  ccat 13891  HomFchof 14347 This theorem is referenced by:  hof2  14356  hofcllem  14357  hofcl  14358  yonedalem3b  14378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-hof 14349
 Copyright terms: Public domain W3C validator