MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadmcd Unicode version

Theorem homadmcd 13890
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
homadmcd  |-  ( F  e.  ( X H Y )  ->  F  =  <. X ,  Y ,  ( 2nd `  F
) >. )

Proof of Theorem homadmcd
StepHypRef Expression
1 homahom.h . . . . 5  |-  H  =  (Homa
`  C )
21homarel 13884 . . . 4  |-  Rel  ( X H Y )
3 1st2nd 6182 . . . 4  |-  ( ( Rel  ( X H Y )  /\  F  e.  ( X H Y ) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
42, 3mpan 651 . . 3  |-  ( F  e.  ( X H Y )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
5 1st2ndbr 6185 . . . . . 6  |-  ( ( Rel  ( X H Y )  /\  F  e.  ( X H Y ) )  ->  ( 1st `  F ) ( X H Y ) ( 2nd `  F
) )
62, 5mpan 651 . . . . 5  |-  ( F  e.  ( X H Y )  ->  ( 1st `  F ) ( X H Y ) ( 2nd `  F
) )
71homa1 13885 . . . . 5  |-  ( ( 1st `  F ) ( X H Y ) ( 2nd `  F
)  ->  ( 1st `  F )  =  <. X ,  Y >. )
86, 7syl 15 . . . 4  |-  ( F  e.  ( X H Y )  ->  ( 1st `  F )  = 
<. X ,  Y >. )
98opeq1d 3818 . . 3  |-  ( F  e.  ( X H Y )  ->  <. ( 1st `  F ) ,  ( 2nd `  F
) >.  =  <. <. X ,  Y >. ,  ( 2nd `  F ) >. )
104, 9eqtrd 2328 . 2  |-  ( F  e.  ( X H Y )  ->  F  =  <. <. X ,  Y >. ,  ( 2nd `  F
) >. )
11 df-ot 3663 . 2  |-  <. X ,  Y ,  ( 2nd `  F ) >.  =  <. <. X ,  Y >. ,  ( 2nd `  F
) >.
1210, 11syl6eqr 2346 1  |-  ( F  e.  ( X H Y )  ->  F  =  <. X ,  Y ,  ( 2nd `  F
) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   <.cop 3656   <.cotp 3657   class class class wbr 4039   Rel wrel 4710   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137  Homachoma 13871
This theorem is referenced by:  arwdmcd  13900  arwlid  13920  arwrid  13921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-ot 3663  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-1st 6138  df-2nd 6139  df-homa 13874
  Copyright terms: Public domain W3C validator