MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarcl2 Unicode version

Theorem homarcl2 14153
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
homarcl2.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
homarcl2  |-  ( F  e.  ( X H Y )  ->  ( X  e.  B  /\  Y  e.  B )
)

Proof of Theorem homarcl2
StepHypRef Expression
1 elfvdm 5724 . . . 4  |-  ( F  e.  ( H `  <. X ,  Y >. )  ->  <. X ,  Y >.  e.  dom  H )
2 df-ov 6051 . . . 4  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
31, 2eleq2s 2504 . . 3  |-  ( F  e.  ( X H Y )  ->  <. X ,  Y >.  e.  dom  H
)
4 homahom.h . . . . 5  |-  H  =  (Homa
`  C )
5 homarcl2.b . . . . 5  |-  B  =  ( Base `  C
)
64homarcl 14146 . . . . 5  |-  ( F  e.  ( X H Y )  ->  C  e.  Cat )
74, 5, 6homaf 14148 . . . 4  |-  ( F  e.  ( X H Y )  ->  H : ( B  X.  B ) --> ~P (
( B  X.  B
)  X.  _V )
)
8 fdm 5562 . . . 4  |-  ( H : ( B  X.  B ) --> ~P (
( B  X.  B
)  X.  _V )  ->  dom  H  =  ( B  X.  B ) )
97, 8syl 16 . . 3  |-  ( F  e.  ( X H Y )  ->  dom  H  =  ( B  X.  B ) )
103, 9eleqtrd 2488 . 2  |-  ( F  e.  ( X H Y )  ->  <. X ,  Y >.  e.  ( B  X.  B ) )
11 opelxp 4875 . 2  |-  ( <. X ,  Y >.  e.  ( B  X.  B
)  <->  ( X  e.  B  /\  Y  e.  B ) )
1210, 11sylib 189 1  |-  ( F  e.  ( X H Y )  ->  ( X  e.  B  /\  Y  e.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2924   ~Pcpw 3767   <.cop 3785    X. cxp 4843   dom cdm 4845   -->wf 5417   ` cfv 5421  (class class class)co 6048   Basecbs 13432  Homachoma 14141
This theorem is referenced by:  homarel  14154  homa1  14155  homahom2  14156  homadm  14158  homacd  14159  arwdm  14165  arwcd  14166  coahom  14188  arwlid  14190  arwrid  14191  arwass  14192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-homa 14144
  Copyright terms: Public domain W3C validator