HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  honegsubi Structured version   Unicode version

Theorem honegsubi 23291
Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hodseq.2  |-  S : ~H
--> ~H
hodseq.3  |-  T : ~H
--> ~H
Assertion
Ref Expression
honegsubi  |-  ( S 
+op  ( -u 1  .op  T ) )  =  ( S  -op  T
)

Proof of Theorem honegsubi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hodseq.2 . . . . . 6  |-  S : ~H
--> ~H
2 neg1cn 10059 . . . . . . 7  |-  -u 1  e.  CC
3 hodseq.3 . . . . . . 7  |-  T : ~H
--> ~H
4 homulcl 23254 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  T : ~H --> ~H )  ->  ( -u 1  .op 
T ) : ~H --> ~H )
52, 3, 4mp2an 654 . . . . . 6  |-  ( -u
1  .op  T ) : ~H --> ~H
6 hosval 23235 . . . . . 6  |-  ( ( S : ~H --> ~H  /\  ( -u 1  .op  T
) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( S  +op  ( -u 1  .op  T
) ) `  x
)  =  ( ( S `  x )  +h  ( ( -u
1  .op  T ) `  x ) ) )
71, 5, 6mp3an12 1269 . . . . 5  |-  ( x  e.  ~H  ->  (
( S  +op  ( -u 1  .op  T ) ) `  x )  =  ( ( S `
 x )  +h  ( ( -u 1  .op  T ) `  x
) ) )
81ffvelrni 5861 . . . . . . 7  |-  ( x  e.  ~H  ->  ( S `  x )  e.  ~H )
93ffvelrni 5861 . . . . . . 7  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
10 hvsubval 22511 . . . . . . 7  |-  ( ( ( S `  x
)  e.  ~H  /\  ( T `  x )  e.  ~H )  -> 
( ( S `  x )  -h  ( T `  x )
)  =  ( ( S `  x )  +h  ( -u 1  .h  ( T `  x
) ) ) )
118, 9, 10syl2anc 643 . . . . . 6  |-  ( x  e.  ~H  ->  (
( S `  x
)  -h  ( T `
 x ) )  =  ( ( S `
 x )  +h  ( -u 1  .h  ( T `  x
) ) ) )
12 homval 23236 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( -u 1  .op  T ) `  x
)  =  ( -u
1  .h  ( T `
 x ) ) )
132, 3, 12mp3an12 1269 . . . . . . 7  |-  ( x  e.  ~H  ->  (
( -u 1  .op  T
) `  x )  =  ( -u 1  .h  ( T `  x
) ) )
1413oveq2d 6089 . . . . . 6  |-  ( x  e.  ~H  ->  (
( S `  x
)  +h  ( (
-u 1  .op  T
) `  x )
)  =  ( ( S `  x )  +h  ( -u 1  .h  ( T `  x
) ) ) )
1511, 14eqtr4d 2470 . . . . 5  |-  ( x  e.  ~H  ->  (
( S `  x
)  -h  ( T `
 x ) )  =  ( ( S `
 x )  +h  ( ( -u 1  .op  T ) `  x
) ) )
167, 15eqtr4d 2470 . . . 4  |-  ( x  e.  ~H  ->  (
( S  +op  ( -u 1  .op  T ) ) `  x )  =  ( ( S `
 x )  -h  ( T `  x
) ) )
17 hodval 23237 . . . . 5  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( S  -op  T ) `  x )  =  ( ( S `
 x )  -h  ( T `  x
) ) )
181, 3, 17mp3an12 1269 . . . 4  |-  ( x  e.  ~H  ->  (
( S  -op  T
) `  x )  =  ( ( S `
 x )  -h  ( T `  x
) ) )
1916, 18eqtr4d 2470 . . 3  |-  ( x  e.  ~H  ->  (
( S  +op  ( -u 1  .op  T ) ) `  x )  =  ( ( S  -op  T ) `  x ) )
2019rgen 2763 . 2  |-  A. x  e.  ~H  ( ( S 
+op  ( -u 1  .op  T ) ) `  x )  =  ( ( S  -op  T
) `  x )
211, 5hoaddcli 23263 . . 3  |-  ( S 
+op  ( -u 1  .op  T ) ) : ~H --> ~H
221, 3hosubcli 23264 . . 3  |-  ( S  -op  T ) : ~H --> ~H
2321, 22hoeqi 23256 . 2  |-  ( A. x  e.  ~H  (
( S  +op  ( -u 1  .op  T ) ) `  x )  =  ( ( S  -op  T ) `  x )  <->  ( S  +op  ( -u 1  .op 
T ) )  =  ( S  -op  T
) )
2420, 23mpbi 200 1  |-  ( S 
+op  ( -u 1  .op  T ) )  =  ( S  -op  T
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   A.wral 2697   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   1c1 8983   -ucneg 9284   ~Hchil 22414    +h cva 22415    .h csm 22416    -h cmv 22420    +op chos 22433    .op chot 22434    -op chod 22435
This theorem is referenced by:  honegsub  23294  hosubeq0i  23321  lnophdi  23497  bdophdi  23592  nmoptri2i  23594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-hilex 22494  ax-hfvadd 22495  ax-hfvmul 22500
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117  df-sub 9285  df-neg 9286  df-hvsub 22466  df-hosum 23225  df-homul 23226  df-hodif 23227
  Copyright terms: Public domain W3C validator