HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoscl Unicode version

Theorem hoscl 22341
Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hoscl  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  A  e. 
~H )  ->  (
( S  +op  T
) `  A )  e.  ~H )

Proof of Theorem hoscl
StepHypRef Expression
1 hosval 22336 . . 3  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  A  e.  ~H )  ->  ( ( S  +op  T ) `  A )  =  ( ( S `
 A )  +h  ( T `  A
) ) )
213expa 1151 . 2  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  A  e. 
~H )  ->  (
( S  +op  T
) `  A )  =  ( ( S `
 A )  +h  ( T `  A
) ) )
3 ffvelrn 5679 . . . . 5  |-  ( ( S : ~H --> ~H  /\  A  e.  ~H )  ->  ( S `  A
)  e.  ~H )
4 ffvelrn 5679 . . . . 5  |-  ( ( T : ~H --> ~H  /\  A  e.  ~H )  ->  ( T `  A
)  e.  ~H )
53, 4anim12i 549 . . . 4  |-  ( ( ( S : ~H --> ~H  /\  A  e.  ~H )  /\  ( T : ~H
--> ~H  /\  A  e. 
~H ) )  -> 
( ( S `  A )  e.  ~H  /\  ( T `  A
)  e.  ~H )
)
65anandirs 804 . . 3  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  A  e. 
~H )  ->  (
( S `  A
)  e.  ~H  /\  ( T `  A )  e.  ~H ) )
7 hvaddcl 21608 . . 3  |-  ( ( ( S `  A
)  e.  ~H  /\  ( T `  A )  e.  ~H )  -> 
( ( S `  A )  +h  ( T `  A )
)  e.  ~H )
86, 7syl 15 . 2  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  A  e. 
~H )  ->  (
( S `  A
)  +h  ( T `
 A ) )  e.  ~H )
92, 8eqeltrd 2370 1  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  A  e. 
~H )  ->  (
( S  +op  T
) `  A )  e.  ~H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   -->wf 5267   ` cfv 5271  (class class class)co 5874   ~Hchil 21515    +h cva 21516    +op chos 21534
This theorem is referenced by:  hoscli  22358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-hilex 21595  ax-hfvadd 21596
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-hosum 22326
  Copyright terms: Public domain W3C validator