MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem2 Unicode version

Theorem hsmexlem2 8069
Description: Lemma for hsmex 8074. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 8213 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f  |-  F  = OrdIso
(  _E  ,  B
)
hsmexlem.g  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
Assertion
Ref Expression
hsmexlem2  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
Distinct variable groups:    A, a    C, a
Allowed substitution hints:    B( a)    F( a)    G( a)

Proof of Theorem hsmexlem2
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 3646 . . . . . 6  |-  ( B  e.  ~P On  ->  B 
C_  On )
21adantr 451 . . . . 5  |-  ( ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  B  C_  On )
32ralimi 2631 . . . 4  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  A. a  e.  A  B  C_  On )
4 iunss 3959 . . . 4  |-  ( U_ a  e.  A  B  C_  On  <->  A. a  e.  A  B  C_  On )
53, 4sylibr 203 . . 3  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  U_ a  e.  A  B  C_  On )
653ad2ant3 978 . 2  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  U_ a  e.  A  B  C_  On )
7 xpexg 4816 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  On )  ->  ( A  X.  C
)  e.  _V )
873adant3 975 . . 3  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( A  X.  C )  e. 
_V )
9 nfv 1609 . . . . . . . . 9  |-  F/ a  C  e.  On
10 nfra1 2606 . . . . . . . . 9  |-  F/ a A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C )
119, 10nfan 1783 . . . . . . . 8  |-  F/ a ( C  e.  On  /\ 
A. a  e.  A  ( B  e.  ~P On  /\  dom  F  e.  C ) )
12 rsp 2616 . . . . . . . . 9  |-  ( A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
)  ->  ( a  e.  A  ->  ( B  e.  ~P On  /\  dom  F  e.  C ) ) )
13 onelss 4450 . . . . . . . . . . . . . 14  |-  ( C  e.  On  ->  ( dom  F  e.  C  ->  dom  F  C_  C )
)
1413imp 418 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  dom  F  e.  C )  ->  dom  F  C_  C
)
1514adantrl 696 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  dom  F  C_  C )
16153adant3 975 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  dom  F 
C_  C )
17 hsmexlem.f . . . . . . . . . . . . . . . . . . 19  |-  F  = OrdIso
(  _E  ,  B
)
1817oismo 7271 . . . . . . . . . . . . . . . . . 18  |-  ( B 
C_  On  ->  ( Smo 
F  /\  ran  F  =  B ) )
191, 18syl 15 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ~P On  ->  ( Smo  F  /\  ran  F  =  B ) )
2019ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( Smo  F  /\  ran  F  =  B ) )
2120simprd 449 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  ran  F  =  B )
2217oif 7261 . . . . . . . . . . . . . . 15  |-  F : dom  F --> B
2321, 22jctil 523 . . . . . . . . . . . . . 14  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( F : dom  F --> B  /\  ran  F  =  B ) )
24 dffo2 5471 . . . . . . . . . . . . . 14  |-  ( F : dom  F -onto-> B  <->  ( F : dom  F --> B  /\  ran  F  =  B ) )
2523, 24sylibr 203 . . . . . . . . . . . . 13  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  ->  F : dom  F -onto-> B
)
26 dffo3 5691 . . . . . . . . . . . . . 14  |-  ( F : dom  F -onto-> B  <->  ( F : dom  F --> B  /\  A. b  e.  B  E. e  e. 
dom  F  b  =  ( F `  e ) ) )
2726simprbi 450 . . . . . . . . . . . . 13  |-  ( F : dom  F -onto-> B  ->  A. b  e.  B  E. e  e.  dom  F  b  =  ( F `
 e ) )
28 rsp 2616 . . . . . . . . . . . . 13  |-  ( A. b  e.  B  E. e  e.  dom  F  b  =  ( F `  e )  ->  (
b  e.  B  ->  E. e  e.  dom  F  b  =  ( F `
 e ) ) )
2925, 27, 283syl 18 . . . . . . . . . . . 12  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C ) )  -> 
( b  e.  B  ->  E. e  e.  dom  F  b  =  ( F `
 e ) ) )
30293impia 1148 . . . . . . . . . . 11  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  E. e  e.  dom  F  b  =  ( F `  e
) )
31 ssrexv 3251 . . . . . . . . . . 11  |-  ( dom 
F  C_  C  ->  ( E. e  e.  dom  F  b  =  ( F `
 e )  ->  E. e  e.  C  b  =  ( F `  e ) ) )
3216, 30, 31sylc 56 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  ( B  e.  ~P On  /\  dom  F  e.  C )  /\  b  e.  B )  ->  E. e  e.  C  b  =  ( F `  e ) )
33323exp 1150 . . . . . . . . 9  |-  ( C  e.  On  ->  (
( B  e.  ~P On  /\  dom  F  e.  C )  ->  (
b  e.  B  ->  E. e  e.  C  b  =  ( F `  e ) ) ) )
3412, 33sylan9r 639 . . . . . . . 8  |-  ( ( C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  (
a  e.  A  -> 
( b  e.  B  ->  E. e  e.  C  b  =  ( F `  e ) ) ) )
3511, 34reximdai 2664 . . . . . . 7  |-  ( ( C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. a  e.  A  E. e  e.  C  b  =  ( F `  e ) ) )
36353adant1 973 . . . . . 6  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. a  e.  A  E. e  e.  C  b  =  ( F `  e ) ) )
37 nfv 1609 . . . . . . 7  |-  F/ d E. e  e.  C  b  =  ( F `  e )
38 nfcv 2432 . . . . . . . 8  |-  F/_ a C
39 nfcv 2432 . . . . . . . . . . 11  |-  F/_ a  _E
40 nfcsb1v 3126 . . . . . . . . . . 11  |-  F/_ a [_ d  /  a ]_ B
4139, 40nfoi 7245 . . . . . . . . . 10  |-  F/_ aOrdIso (  _E  ,  [_ d  /  a ]_ B
)
42 nfcv 2432 . . . . . . . . . 10  |-  F/_ a
e
4341, 42nffv 5548 . . . . . . . . 9  |-  F/_ a
(OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
)
4443nfeq2 2443 . . . . . . . 8  |-  F/ a  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e )
4538, 44nfrex 2611 . . . . . . 7  |-  F/ a E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e )
46 csbeq1a 3102 . . . . . . . . . . . 12  |-  ( a  =  d  ->  B  =  [_ d  /  a ]_ B )
47 oieq2 7244 . . . . . . . . . . . 12  |-  ( B  =  [_ d  / 
a ]_ B  -> OrdIso (  _E  ,  B )  = OrdIso
(  _E  ,  [_ d  /  a ]_ B
) )
4846, 47syl 15 . . . . . . . . . . 11  |-  ( a  =  d  -> OrdIso (  _E  ,  B )  = OrdIso
(  _E  ,  [_ d  /  a ]_ B
) )
4917, 48syl5eq 2340 . . . . . . . . . 10  |-  ( a  =  d  ->  F  = OrdIso (  _E  ,  [_ d  /  a ]_ B
) )
5049fveq1d 5543 . . . . . . . . 9  |-  ( a  =  d  ->  ( F `  e )  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
) )
5150eqeq2d 2307 . . . . . . . 8  |-  ( a  =  d  ->  (
b  =  ( F `
 e )  <->  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
) )
5251rexbidv 2577 . . . . . . 7  |-  ( a  =  d  ->  ( E. e  e.  C  b  =  ( F `  e )  <->  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
) )
5337, 45, 52cbvrex 2774 . . . . . 6  |-  ( E. a  e.  A  E. e  e.  C  b  =  ( F `  e )  <->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B
) `  e )
)
5436, 53syl6ib 217 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  ( E. a  e.  A  b  e.  B  ->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  /  a ]_ B ) `  e
) ) )
55 eliun 3925 . . . . 5  |-  ( b  e.  U_ a  e.  A  B  <->  E. a  e.  A  b  e.  B )
56 vex 2804 . . . . . . . . . . 11  |-  d  e. 
_V
57 vex 2804 . . . . . . . . . . 11  |-  e  e. 
_V
5856, 57op1std 6146 . . . . . . . . . 10  |-  ( c  =  <. d ,  e
>.  ->  ( 1st `  c
)  =  d )
5958csbeq1d 3100 . . . . . . . . 9  |-  ( c  =  <. d ,  e
>.  ->  [_ ( 1st `  c
)  /  a ]_ B  =  [_ d  / 
a ]_ B )
60 oieq2 7244 . . . . . . . . 9  |-  ( [_ ( 1st `  c )  /  a ]_ B  =  [_ d  /  a ]_ B  -> OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B )  = OrdIso (  _E  ,  [_ d  / 
a ]_ B ) )
6159, 60syl 15 . . . . . . . 8  |-  ( c  =  <. d ,  e
>.  -> OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B
)  = OrdIso (  _E  ,  [_ d  /  a ]_ B ) )
6256, 57op2ndd 6147 . . . . . . . 8  |-  ( c  =  <. d ,  e
>.  ->  ( 2nd `  c
)  =  e )
6361, 62fveq12d 5547 . . . . . . 7  |-  ( c  =  <. d ,  e
>.  ->  (OrdIso (  _E  ,  [_ ( 1st `  c
)  /  a ]_ B ) `  ( 2nd `  c ) )  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) )
6463eqeq2d 2307 . . . . . 6  |-  ( c  =  <. d ,  e
>.  ->  ( b  =  (OrdIso (  _E  ,  [_ ( 1st `  c
)  /  a ]_ B ) `  ( 2nd `  c ) )  <-> 
b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) ) )
6564rexxp 4844 . . . . 5  |-  ( E. c  e.  ( A  X.  C ) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B ) `  ( 2nd `  c ) )  <->  E. d  e.  A  E. e  e.  C  b  =  (OrdIso (  _E  ,  [_ d  / 
a ]_ B ) `  e ) )
6654, 55, 653imtr4g 261 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  (
b  e.  U_ a  e.  A  B  ->  E. c  e.  ( A  X.  C ) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B ) `  ( 2nd `  c ) ) ) )
6766imp 418 . . 3  |-  ( ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  /\  b  e.  U_ a  e.  A  B )  ->  E. c  e.  ( A  X.  C
) b  =  (OrdIso (  _E  ,  [_ ( 1st `  c )  /  a ]_ B
) `  ( 2nd `  c ) ) )
688, 67wdomd 7311 . 2  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  U_ a  e.  A  B  ~<_*  ( A  X.  C
) )
69 hsmexlem.g . . 3  |-  G  = OrdIso
(  _E  ,  U_ a  e.  A  B
)
7069hsmexlem1 8068 . 2  |-  ( (
U_ a  e.  A  B  C_  On  /\  U_ a  e.  A  B  ~<_*  ( A  X.  C ) )  ->  dom  G  e.  (har `  ~P ( A  X.  C ) ) )
716, 68, 70syl2anc 642 1  |-  ( ( A  e.  _V  /\  C  e.  On  /\  A. a  e.  A  ( B  e.  ~P On  /\ 
dom  F  e.  C
) )  ->  dom  G  e.  (har `  ~P ( A  X.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801   [_csb 3094    C_ wss 3165   ~Pcpw 3638   <.cop 3656   U_ciun 3921   class class class wbr 4039    _E cep 4319   Oncon0 4408    X. cxp 4703   dom cdm 4705   ran crn 4706   -->wf 5267   -onto->wfo 5269   ` cfv 5271   1stc1st 6136   2ndc2nd 6137   Smo wsmo 6378  OrdIsocoi 7240  harchar 7286    ~<_* cwdom 7287
This theorem is referenced by:  hsmexlem3  8070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-1st 6138  df-2nd 6139  df-riota 6320  df-smo 6379  df-recs 6404  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-oi 7241  df-har 7288  df-wdom 7289
  Copyright terms: Public domain W3C validator