HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Unicode version

Theorem hsn0elch 21827
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch  |-  { 0h }  e.  CH

Proof of Theorem hsn0elch
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 21583 . . . . 5  |-  0h  e.  ~H
2 snssi 3759 . . . . 5  |-  ( 0h  e.  ~H  ->  { 0h }  C_  ~H )
31, 2ax-mp 8 . . . 4  |-  { 0h }  C_  ~H
41elexi 2797 . . . . 5  |-  0h  e.  _V
54snid 3667 . . . 4  |-  0h  e.  { 0h }
63, 5pm3.2i 441 . . 3  |-  ( { 0h }  C_  ~H  /\ 
0h  e.  { 0h } )
7 elsn 3655 . . . . . 6  |-  ( x  e.  { 0h }  <->  x  =  0h )
8 elsn 3655 . . . . . 6  |-  ( y  e.  { 0h }  <->  y  =  0h )
9 oveq12 5867 . . . . . . . 8  |-  ( ( x  =  0h  /\  y  =  0h )  ->  ( x  +h  y
)  =  ( 0h 
+h  0h ) )
101hvaddid2i 21608 . . . . . . . 8  |-  ( 0h 
+h  0h )  =  0h
119, 10syl6eq 2331 . . . . . . 7  |-  ( ( x  =  0h  /\  y  =  0h )  ->  ( x  +h  y
)  =  0h )
12 ovex 5883 . . . . . . . 8  |-  ( x  +h  y )  e. 
_V
1312elsnc 3663 . . . . . . 7  |-  ( ( x  +h  y )  e.  { 0h }  <->  ( x  +h  y )  =  0h )
1411, 13sylibr 203 . . . . . 6  |-  ( ( x  =  0h  /\  y  =  0h )  ->  ( x  +h  y
)  e.  { 0h } )
157, 8, 14syl2anb 465 . . . . 5  |-  ( ( x  e.  { 0h }  /\  y  e.  { 0h } )  ->  (
x  +h  y )  e.  { 0h }
)
1615rgen2a 2609 . . . 4  |-  A. x  e.  { 0h } A. y  e.  { 0h }  ( x  +h  y )  e.  { 0h }
17 oveq2 5866 . . . . . . . 8  |-  ( y  =  0h  ->  (
x  .h  y )  =  ( x  .h 
0h ) )
18 hvmul0 21603 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x  .h  0h )  =  0h )
1917, 18sylan9eqr 2337 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  =  0h )  ->  ( x  .h  y
)  =  0h )
20 ovex 5883 . . . . . . . 8  |-  ( x  .h  y )  e. 
_V
2120elsnc 3663 . . . . . . 7  |-  ( ( x  .h  y )  e.  { 0h }  <->  ( x  .h  y )  =  0h )
2219, 21sylibr 203 . . . . . 6  |-  ( ( x  e.  CC  /\  y  =  0h )  ->  ( x  .h  y
)  e.  { 0h } )
238, 22sylan2b 461 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  { 0h } )  ->  (
x  .h  y )  e.  { 0h }
)
2423rgen2 2639 . . . 4  |-  A. x  e.  CC  A. y  e. 
{ 0h }  (
x  .h  y )  e.  { 0h }
2516, 24pm3.2i 441 . . 3  |-  ( A. x  e.  { 0h } A. y  e.  { 0h }  ( x  +h  y )  e.  { 0h }  /\  A. x  e.  CC  A. y  e. 
{ 0h }  (
x  .h  y )  e.  { 0h }
)
26 issh2 21788 . . 3  |-  ( { 0h }  e.  SH  <->  ( ( { 0h }  C_ 
~H  /\  0h  e.  { 0h } )  /\  ( A. x  e.  { 0h } A. y  e. 
{ 0h }  (
x  +h  y )  e.  { 0h }  /\  A. x  e.  CC  A. y  e.  { 0h }  ( x  .h  y )  e.  { 0h } ) ) )
276, 25, 26mpbir2an 886 . 2  |-  { 0h }  e.  SH
284fconst2 5730 . . . . . 6  |-  ( f : NN --> { 0h } 
<->  f  =  ( NN 
X.  { 0h }
) )
29 hlim0 21815 . . . . . . 7  |-  ( NN 
X.  { 0h }
)  ~~>v  0h
30 breq1 4026 . . . . . . 7  |-  ( f  =  ( NN  X.  { 0h } )  -> 
( f  ~~>v  0h  <->  ( NN  X.  { 0h } ) 
~~>v  0h ) )
3129, 30mpbiri 224 . . . . . 6  |-  ( f  =  ( NN  X.  { 0h } )  -> 
f  ~~>v  0h )
3228, 31sylbi 187 . . . . 5  |-  ( f : NN --> { 0h }  ->  f  ~~>v  0h )
33 hlimuni 21818 . . . . . 6  |-  ( ( f  ~~>v  0h  /\  f  ~~>v  x )  ->  0h  =  x )
3433eleq1d 2349 . . . . 5  |-  ( ( f  ~~>v  0h  /\  f  ~~>v  x )  ->  ( 0h  e.  { 0h }  <->  x  e.  { 0h }
) )
3532, 34sylan 457 . . . 4  |-  ( ( f : NN --> { 0h }  /\  f  ~~>v  x )  ->  ( 0h  e.  { 0h }  <->  x  e.  { 0h } ) )
365, 35mpbii 202 . . 3  |-  ( ( f : NN --> { 0h }  /\  f  ~~>v  x )  ->  x  e.  { 0h } )
3736gen2 1534 . 2  |-  A. f A. x ( ( f : NN --> { 0h }  /\  f  ~~>v  x )  ->  x  e.  { 0h } )
38 isch2 21803 . 2  |-  ( { 0h }  e.  CH  <->  ( { 0h }  e.  SH  /\  A. f A. x ( ( f : NN --> { 0h }  /\  f  ~~>v  x )  ->  x  e.  { 0h } ) ) )
3927, 37, 38mpbir2an 886 1  |-  { 0h }  e.  CH
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   {csn 3640   class class class wbr 4023    X. cxp 4687   -->wf 5251  (class class class)co 5858   CCcc 8735   NNcn 9746   ~Hchil 21499    +h cva 21500    .h csm 21501   0hc0v 21504    ~~>v chli 21507   SHcsh 21508   CHcch 21509
This theorem is referenced by:  h0elch  21834  h1de2ctlem  22134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-lm 16959  df-haus 17043  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-hnorm 21548  df-hvsub 21551  df-hlim 21552  df-sh 21786  df-ch 21801
  Copyright terms: Public domain W3C validator