HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstorth Unicode version

Theorem hstorth 22816
Description: Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstorth  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( S `
 A )  .ih  ( S `  B ) )  =  0 )

Proof of Theorem hstorth
StepHypRef Expression
1 hstel2 22815 . 2  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( ( S `  A ) 
.ih  ( S `  B ) )  =  0  /\  ( S `
 ( A  vH  B ) )  =  ( ( S `  A )  +h  ( S `  B )
) ) )
21simpld 445 1  |-  ( ( ( S  e.  CHStates  /\  A  e.  CH )  /\  ( B  e.  CH  /\  A  C_  ( _|_ `  B ) ) )  ->  ( ( S `
 A )  .ih  ( S `  B ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   ` cfv 5271  (class class class)co 5874   0cc0 8753    +h cva 21516    .ih csp 21518   CHcch 21525   _|_cort 21526    vH chj 21529   CHStateschst 21559
This theorem is referenced by:  hstnmoc  22819  hstpyth  22825  hstoh  22828  hst0  22829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-hilex 21595
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-sh 21802  df-ch 21817  df-hst 22808
  Copyright terms: Public domain W3C validator