MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Unicode version

Theorem htpycc 19005
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
htpycc.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
htpycc.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpycc.5  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpycc.6  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
htpycc.7  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
htpycc.8  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
Assertion
Ref Expression
htpycc  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, X, y    ph, x, y
Allowed substitution hints:    F( x, y)    G( x, y)    H( x, y)    N( x, y)

Proof of Theorem htpycc
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 htpycc.4 . 2  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3 htpycc.6 . 2  |-  ( ph  ->  H  e.  ( J  Cn  K ) )
4 htpycc.1 . . 3  |-  N  =  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )
5 iitopon 18909 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
65a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
7 eqid 2436 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
8 eqid 2436 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
9 eqid 2436 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
10 dfii2 18912 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
11 0re 9091 . . . . . 6  |-  0  e.  RR
1211a1i 11 . . . . 5  |-  ( ph  ->  0  e.  RR )
13 1re 9090 . . . . . 6  |-  1  e.  RR
1413a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
1513rehalfcli 10216 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
16 halfgt0 10188 . . . . . . . 8  |-  0  <  ( 1  /  2
)
1711, 15, 16ltleii 9196 . . . . . . 7  |-  0  <_  ( 1  /  2
)
18 halflt1 10189 . . . . . . . 8  |-  ( 1  /  2 )  <  1
1915, 13, 18ltleii 9196 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
2011, 13elicc2i 10976 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
2115, 17, 19, 20mpbir3an 1136 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
2221a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
23 htpycc.5 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
24 htpycc.7 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( F ( J Htpy  K ) G ) )
251, 2, 23, 24htpyi 18999 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s L 0 )  =  ( F `
 s )  /\  ( s L 1 )  =  ( G `
 s ) ) )
2625simprd 450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( G `  s ) )
27 htpycc.8 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( G ( J Htpy  K ) H ) )
281, 23, 3, 27htpyi 18999 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  X )  ->  (
( s M 0 )  =  ( G `
 s )  /\  ( s M 1 )  =  ( H `
 s ) ) )
2928simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 0 )  =  ( G `  s ) )
3026, 29eqtr4d 2471 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 1 )  =  ( s M 0 ) )
3130ralrimiva 2789 . . . . . . . 8  |-  ( ph  ->  A. s  e.  X  ( s L 1 )  =  ( s M 0 ) )
32 oveq1 6088 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s L 1 )  =  ( x L 1 ) )
33 oveq1 6088 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s M 0 )  =  ( x M 0 ) )
3432, 33eqeq12d 2450 . . . . . . . . 9  |-  ( s  =  x  ->  (
( s L 1 )  =  ( s M 0 )  <->  ( x L 1 )  =  ( x M 0 ) ) )
3534rspccva 3051 . . . . . . . 8  |-  ( ( A. s  e.  X  ( s L 1 )  =  ( s M 0 )  /\  x  e.  X )  ->  ( x L 1 )  =  ( x M 0 ) )
3631, 35sylan 458 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
x L 1 )  =  ( x M 0 ) )
3736adantrl 697 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L 1 )  =  ( x M 0 ) )
38 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
y  =  ( 1  /  2 ) )
3938oveq2d 6097 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
40 2cn 10070 . . . . . . . . 9  |-  2  e.  CC
41 2ne0 10083 . . . . . . . . 9  |-  2  =/=  0
4240, 41recidi 9745 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
4339, 42syl6eq 2484 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( 2  x.  y
)  =  1 )
4443oveq2d 6097 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x L 1 ) )
4543oveq1d 6096 . . . . . . . 8  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
46 1m1e0 10068 . . . . . . . 8  |-  ( 1  -  1 )  =  0
4745, 46syl6eq 2484 . . . . . . 7  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( ( 2  x.  y )  -  1 )  =  0 )
4847oveq2d 6097 . . . . . 6  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x M ( ( 2  x.  y
)  -  1 ) )  =  ( x M 0 ) )
4937, 44, 483eqtr4d 2478 . . . . 5  |-  ( (
ph  /\  ( y  =  ( 1  / 
2 )  /\  x  e.  X ) )  -> 
( x L ( 2  x.  y ) )  =  ( x M ( ( 2  x.  y )  - 
1 ) ) )
50 retopon 18797 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
51 iccssre 10992 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
5211, 15, 51mp2an 654 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
53 resttopon 17225 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5450, 52, 53mp2an 654 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
5554a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
5655, 1cnmpt2nd 17701 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  J
) )
5755, 1cnmpt1st 17700 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
588iihalf1cn 18957 . . . . . . . 8  |-  ( z  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  z ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  z
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
60 oveq2 6089 . . . . . . 7  |-  ( z  =  y  ->  (
2  x.  z )  =  ( 2  x.  y ) )
6155, 1, 57, 55, 59, 60cnmpt21 17703 . . . . . 6  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  II ) )
621, 2, 23htpycn 18998 . . . . . . 7  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
6362, 24sseldd 3349 . . . . . 6  |-  ( ph  ->  L  e.  ( ( J  tX  II )  Cn  K ) )
6455, 1, 56, 61, 63cnmpt22f 17707 . . . . 5  |-  ( ph  ->  ( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  x  e.  X  |->  ( x L ( 2  x.  y ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  J )  Cn  K
) )
65 iccssre 10992 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
6615, 13, 65mp2an 654 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
67 resttopon 17225 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
6850, 66, 67mp2an 654 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
6968a1i 11 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
7069, 1cnmpt2nd 17701 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  J
) )
7169, 1cnmpt1st 17700 . . . . . . 7  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
729iihalf2cn 18959 . . . . . . . 8  |-  ( z  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
7372a1i 11 . . . . . . 7  |-  ( ph  ->  ( z  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
7460oveq1d 6096 . . . . . . 7  |-  ( z  =  y  ->  (
( 2  x.  z
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
7569, 1, 71, 69, 73, 74cnmpt21 17703 . . . . . 6  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  II ) )
761, 23, 3htpycn 18998 . . . . . . 7  |-  ( ph  ->  ( G ( J Htpy 
K ) H ) 
C_  ( ( J 
tX  II )  Cn  K ) )
7776, 27sseldd 3349 . . . . . 6  |-  ( ph  ->  M  e.  ( ( J  tX  II )  Cn  K ) )
7869, 1, 70, 75, 77cnmpt22f 17707 . . . . 5  |-  ( ph  ->  ( y  e.  ( ( 1  /  2
) [,] 1 ) ,  x  e.  X  |->  ( x M ( ( 2  x.  y
)  -  1 ) ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  J )  Cn  K
) )
797, 8, 9, 10, 12, 14, 22, 1, 49, 64, 78cnmpt2pc 18953 . . . 4  |-  ( ph  ->  ( y  e.  ( 0 [,] 1 ) ,  x  e.  X  |->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( II  tX  J )  Cn  K
) )
806, 1, 79cnmptcom 17710 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  (
0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y
)  -  1 ) ) ) )  e.  ( ( J  tX  II )  Cn  K
) )
814, 80syl5eqel 2520 . 2  |-  ( ph  ->  N  e.  ( ( J  tX  II )  Cn  K ) )
82 simpr 448 . . . 4  |-  ( (
ph  /\  s  e.  X )  ->  s  e.  X )
83 0elunit 11015 . . . 4  |-  0  e.  ( 0 [,] 1
)
84 simpr 448 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
8584, 17syl6eqbr 4249 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  <_  (
1  /  2 ) )
86 iftrue 3745 . . . . . . 7  |-  ( y  <_  ( 1  / 
2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( x L ( 2  x.  y
) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x L ( 2  x.  y ) ) )
8785, 86syl 16 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x L ( 2  x.  y ) ) )
88 simpl 444 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8984oveq2d 6097 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  ( 2  x.  0 ) )
9040mul01i 9256 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
9189, 90syl6eq 2484 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  y )  =  0 )
9288, 91oveq12d 6099 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x L ( 2  x.  y
) )  =  ( s L 0 ) )
9387, 92eqtrd 2468 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s L 0 ) )
94 ovex 6106 . . . . 5  |-  ( s L 0 )  e. 
_V
9593, 4, 94ovmpt2a 6204 . . . 4  |-  ( ( s  e.  X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s N 0 )  =  ( s L 0 ) )
9682, 83, 95sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( s L 0 ) )
9725simpld 446 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s L 0 )  =  ( F `  s ) )
9896, 97eqtrd 2468 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 0 )  =  ( F `  s ) )
99 1elunit 11016 . . . 4  |-  1  e.  ( 0 [,] 1
)
10015, 13ltnlei 9194 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
10118, 100mpbi 200 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
102 simpr 448 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
103102breq1d 4222 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
104101, 103mtbiri 295 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  -.  y  <_  ( 1  /  2 ) )
105 iffalse 3746 . . . . . . 7  |-  ( -.  y  <_  ( 1  /  2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( x L ( 2  x.  y
) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x M ( ( 2  x.  y )  - 
1 ) ) )
106104, 105syl 16 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( x M ( ( 2  x.  y
)  -  1 ) ) )
107 simpl 444 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
108102oveq2d 6097 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  ( 2  x.  1 ) )
10940mulid1i 9092 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
110108, 109syl6eq 2484 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  y )  =  2 )
111110oveq1d 6096 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 2  -  1 ) )
112 2m1e1 10095 . . . . . . . 8  |-  ( 2  -  1 )  =  1
113111, 112syl6eq 2484 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  y )  - 
1 )  =  1 )
114107, 113oveq12d 6099 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x M ( ( 2  x.  y )  -  1 ) )  =  ( s M 1 ) )
115106, 114eqtrd 2468 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( x L ( 2  x.  y ) ) ,  ( x M ( ( 2  x.  y )  -  1 ) ) )  =  ( s M 1 ) )
116 ovex 6106 . . . . 5  |-  ( s M 1 )  e. 
_V
117115, 4, 116ovmpt2a 6204 . . . 4  |-  ( ( s  e.  X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s N 1 )  =  ( s M 1 ) )
11882, 99, 117sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( s M 1 ) )
11928simprd 450 . . 3  |-  ( (
ph  /\  s  e.  X )  ->  (
s M 1 )  =  ( H `  s ) )
120118, 119eqtrd 2468 . 2  |-  ( (
ph  /\  s  e.  X )  ->  (
s N 1 )  =  ( H `  s ) )
1211, 2, 3, 81, 98, 120ishtpyd 19000 1  |-  ( ph  ->  N  e.  ( F ( J Htpy  K ) H ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    C_ wss 3320   ifcif 3739   class class class wbr 4212    e. cmpt 4266   ran crn 4879   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   2c2 10049   (,)cioo 10916   [,]cicc 10919   ↾t crest 13648   topGenctg 13665  TopOnctopon 16959    Cn ccn 17288    tX ctx 17592   IIcii 18905   Htpy chtpy 18992
This theorem is referenced by:  phtpycc  19016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-cn 17291  df-cnp 17292  df-tx 17594  df-hmeo 17787  df-xms 18350  df-ms 18351  df-tms 18352  df-ii 18907  df-htpy 18995
  Copyright terms: Public domain W3C validator