MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco2 Unicode version

Theorem htpyco2 18477
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco2.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
htpyco2.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
htpyco2.p  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
htpyco2.h  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
Assertion
Ref Expression
htpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )

Proof of Theorem htpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 htpyco2.f . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 cntop1 16970 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
31, 2syl 15 . . 3  |-  ( ph  ->  J  e.  Top )
4 eqid 2283 . . . 4  |-  U. J  =  U. J
54toptopon 16671 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
63, 5sylib 188 . 2  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
7 htpyco2.p . . 3  |-  ( ph  ->  P  e.  ( K  Cn  L ) )
8 cnco 16995 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  F
)  e.  ( J  Cn  L ) )
91, 7, 8syl2anc 642 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( J  Cn  L ) )
10 htpyco2.g . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
11 cnco 16995 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  G
)  e.  ( J  Cn  L ) )
1210, 7, 11syl2anc 642 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( J  Cn  L ) )
136, 1, 10htpycn 18471 . . . 4  |-  ( ph  ->  ( F ( J Htpy 
K ) G ) 
C_  ( ( J 
tX  II )  Cn  K ) )
14 htpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( J Htpy  K ) G ) )
1513, 14sseldd 3181 . . 3  |-  ( ph  ->  H  e.  ( ( J  tX  II )  Cn  K ) )
16 cnco 16995 . . 3  |-  ( ( H  e.  ( ( J  tX  II )  Cn  K )  /\  P  e.  ( K  Cn  L ) )  -> 
( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
1715, 7, 16syl2anc 642 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( J  tX  II )  Cn  L ) )
186, 1, 10, 14htpyi 18472 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( s H 0 )  =  ( F `
 s )  /\  ( s H 1 )  =  ( G `
 s ) ) )
1918simpld 445 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 0 )  =  ( F `  s ) )
2019fveq2d 5529 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 0 ) )  =  ( P `  ( F `  s ) ) )
21 simpr 447 . . . . . 6  |-  ( (
ph  /\  s  e.  U. J )  ->  s  e.  U. J )
22 0elunit 10754 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
23 opelxpi 4721 . . . . . 6  |-  ( ( s  e.  U. J  /\  0  e.  (
0 [,] 1 ) )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
2421, 22, 23sylancl 643 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
25 iitopon 18383 . . . . . . . 8  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
26 txtopon 17286 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  ( 0 [,] 1
) ) ) )
276, 25, 26sylancl 643 . . . . . . 7  |-  ( ph  ->  ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) ) )
28 cntop2 16971 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
291, 28syl 15 . . . . . . . 8  |-  ( ph  ->  K  e.  Top )
30 eqid 2283 . . . . . . . . 9  |-  U. K  =  U. K
3130toptopon 16671 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3229, 31sylib 188 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
33 cnf2 16979 . . . . . . 7  |-  ( ( ( J  tX  II )  e.  (TopOn `  ( U. J  X.  (
0 [,] 1 ) ) )  /\  K  e.  (TopOn `  U. K )  /\  H  e.  ( ( J  tX  II )  Cn  K ) )  ->  H : ( U. J  X.  (
0 [,] 1 ) ) --> U. K )
3427, 32, 15, 33syl3anc 1182 . . . . . 6  |-  ( ph  ->  H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K )
35 fvco3 5596 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3634, 35sylan 457 . . . . 5  |-  ( (
ph  /\  <. s ,  0 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
3724, 36syldan 456 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  0 >. )  =  ( P `  ( H `
 <. s ,  0
>. ) ) )
38 df-ov 5861 . . . 4  |-  ( s ( P  o.  H
) 0 )  =  ( ( P  o.  H ) `  <. s ,  0 >. )
39 df-ov 5861 . . . . 5  |-  ( s H 0 )  =  ( H `  <. s ,  0 >. )
4039fveq2i 5528 . . . 4  |-  ( P `
 ( s H 0 ) )  =  ( P `  ( H `  <. s ,  0 >. ) )
4137, 38, 403eqtr4g 2340 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( P `  ( s H 0 ) ) )
424, 30cnf 16976 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
431, 42syl 15 . . . 4  |-  ( ph  ->  F : U. J --> U. K )
44 fvco3 5596 . . . 4  |-  ( ( F : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  F ) `  s
)  =  ( P `
 ( F `  s ) ) )
4543, 44sylan 457 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  F
) `  s )  =  ( P `  ( F `  s ) ) )
4620, 41, 453eqtr4d 2325 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 0 )  =  ( ( P  o.  F ) `  s ) )
4718simprd 449 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s H 1 )  =  ( G `  s ) )
4847fveq2d 5529 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  ( P `  ( s H 1 ) )  =  ( P `  ( G `  s ) ) )
49 1elunit 10755 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
50 opelxpi 4721 . . . . . 6  |-  ( ( s  e.  U. J  /\  1  e.  (
0 [,] 1 ) )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
5121, 49, 50sylancl 643 . . . . 5  |-  ( (
ph  /\  s  e.  U. J )  ->  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )
52 fvco3 5596 . . . . . 6  |-  ( ( H : ( U. J  X.  ( 0 [,] 1 ) ) --> U. K  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5334, 52sylan 457 . . . . 5  |-  ( (
ph  /\  <. s ,  1 >.  e.  ( U. J  X.  (
0 [,] 1 ) ) )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
5451, 53syldan 456 . . . 4  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  H
) `  <. s ,  1 >. )  =  ( P `  ( H `
 <. s ,  1
>. ) ) )
55 df-ov 5861 . . . 4  |-  ( s ( P  o.  H
) 1 )  =  ( ( P  o.  H ) `  <. s ,  1 >. )
56 df-ov 5861 . . . . 5  |-  ( s H 1 )  =  ( H `  <. s ,  1 >. )
5756fveq2i 5528 . . . 4  |-  ( P `
 ( s H 1 ) )  =  ( P `  ( H `  <. s ,  1 >. ) )
5854, 55, 573eqtr4g 2340 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( P `  ( s H 1 ) ) )
594, 30cnf 16976 . . . . 5  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
6010, 59syl 15 . . . 4  |-  ( ph  ->  G : U. J --> U. K )
61 fvco3 5596 . . . 4  |-  ( ( G : U. J --> U. K  /\  s  e.  U. J )  -> 
( ( P  o.  G ) `  s
)  =  ( P `
 ( G `  s ) ) )
6260, 61sylan 457 . . 3  |-  ( (
ph  /\  s  e.  U. J )  ->  (
( P  o.  G
) `  s )  =  ( P `  ( G `  s ) ) )
6348, 58, 623eqtr4d 2325 . 2  |-  ( (
ph  /\  s  e.  U. J )  ->  (
s ( P  o.  H ) 1 )  =  ( ( P  o.  G ) `  s ) )
646, 9, 12, 17, 46, 63ishtpyd 18473 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( J Htpy  L ) ( P  o.  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   U.cuni 3827    X. cxp 4687    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738   [,]cicc 10659   Topctop 16631  TopOnctopon 16632    Cn ccn 16954    tX ctx 17255   IIcii 18379   Htpy chtpy 18465
This theorem is referenced by:  phtpyco2  18488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cn 16957  df-tx 17257  df-ii 18381  df-htpy 18468
  Copyright terms: Public domain W3C validator