MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Unicode version

Theorem htthlem 21513
Description: Lemma for htth 21514. The collection  K, which consists of functions  F ( z ) ( w )  =  <. w  |  T
( z ) >.  =  <. T ( w )  |  z >. for each  z in the unit ball, is a collection of bounded linear functions by ipblnfi 21450, so by the Uniform Boundedness theorem ubth 21468, there is a uniform bound  y on  ||  F ( x )  || for all  x in the unit ball. Then  |  T (
x )  |  ^
2  =  <. T ( x )  |  T
( x ) >.  =  F ( x ) (  T ( x ) )  <_  y  |  T ( x )  |, so  |  T ( x )  |  <_  y and 
T is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1  |-  X  =  ( BaseSet `  U )
htth.2  |-  P  =  ( .i OLD `  U
)
htth.3  |-  L  =  ( U  LnOp  U
)
htth.4  |-  B  =  ( U  BLnOp  U )
htthlem.5  |-  N  =  ( normCV `  U )
htthlem.6  |-  U  e. 
CHil OLD
htthlem.7  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
htthlem.8  |-  ( ph  ->  T  e.  L )
htthlem.9  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
htthlem.10  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
htthlem.11  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
Assertion
Ref Expression
htthlem  |-  ( ph  ->  T  e.  B )
Distinct variable groups:    y, w, F    x, w, z, K, y    w, N, x, y, z    w, P, z    w, W, x, y, z    ph, w, x, y, z    w, T, x, y, z    w, U, x, y, z    w, X, x, y, z
Allowed substitution hints:    B( x, y, z, w)    P( x, y)    F( x, z)    L( x, y, z, w)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2  |-  ( ph  ->  T  e.  L )
2 htthlem.6 . . . . . . . . . 10  |-  U  e. 
CHil OLD
32hlnvi 21487 . . . . . . . . 9  |-  U  e.  NrmCVec
4 htth.1 . . . . . . . . . . . . 13  |-  X  =  ( BaseSet `  U )
5 htth.3 . . . . . . . . . . . . 13  |-  L  =  ( U  LnOp  U
)
64, 4, 5lnof 21349 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> X )
73, 3, 6mp3an12 1267 . . . . . . . . . . 11  |-  ( T  e.  L  ->  T : X --> X )
81, 7syl 15 . . . . . . . . . 10  |-  ( ph  ->  T : X --> X )
9 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( T : X --> X  /\  x  e.  X )  ->  ( T `  x
)  e.  X )
108, 9sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( T `  x )  e.  X )
11 htthlem.5 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
124, 11nvcl 21241 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
133, 10, 12sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
14 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( T : X --> X  /\  z  e.  X )  ->  ( T `  z
)  e.  X )
158, 14sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  X )  ->  ( T `  z )  e.  X )
16 htth.2 . . . . . . . . . . . . . . . . 17  |-  P  =  ( .i OLD `  U
)
17 hlph 21484 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  CHil OLD  ->  U  e.  CPreHil
OLD )
182, 17ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  U  e.  CPreHil
OLD
19 htthlem.7 . . . . . . . . . . . . . . . . 17  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
20 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
21 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  X  |->  ( w P ( T `  z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  z
) ) )
224, 16, 18, 19, 20, 21ipblnfi 21450 . . . . . . . . . . . . . . . 16  |-  ( ( T `  z )  e.  X  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
2315, 22syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  X )  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
24 htthlem.10 . . . . . . . . . . . . . . 15  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
2523, 24fmptd 5700 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : X --> ( U 
BLnOp  W ) )
26 ffun 5407 . . . . . . . . . . . . . 14  |-  ( F : X --> ( U 
BLnOp  W )  ->  Fun  F )
2725, 26syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
2827adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  Fun  F )
29 id 19 . . . . . . . . . . . . 13  |-  ( w  e.  K  ->  w  e.  K )
30 htthlem.11 . . . . . . . . . . . . 13  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
3129, 30syl6eleq 2386 . . . . . . . . . . . 12  |-  ( w  e.  K  ->  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )
32 fvelima 5590 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3328, 31, 32syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  w  e.  K )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3433ex 423 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w ) )
35 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( N `  z )  =  ( N `  y ) )
3635breq1d 4049 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( N `  z
)  <_  1  <->  ( N `  y )  <_  1
) )
3736elrab 2936 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( y  e.  X  /\  ( N `  y )  <_  1 ) )
38 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  ( T `  z )  =  ( T `  y ) )
3938oveq2d 5890 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  y
) ) )
4039mpteq2dv 4123 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  y  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y ) ) ) )
414hlex 21493 . . . . . . . . . . . . . . . . . . . . 21  |-  X  e. 
_V
4241mptex 5762 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  e.  _V
4340, 24, 42fvmpt 5618 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  X  ->  ( F `  y )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) ) )
4443fveq1d 5543 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  X  ->  (
( F `  y
) `  x )  =  ( ( w  e.  X  |->  ( w P ( T `  y ) ) ) `
 x ) )
45 oveq1 5881 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  x  ->  (
w P ( T `
 y ) )  =  ( x P ( T `  y
) ) )
46 eqid 2296 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) )
47 ovex 5899 . . . . . . . . . . . . . . . . . . 19  |-  ( x P ( T `  y ) )  e. 
_V
4845, 46, 47fvmpt 5618 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  y ) ) ) `  x
)  =  ( x P ( T `  y ) ) )
4944, 48sylan9eqr 2350 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( F `  y ) `  x
)  =  ( x P ( T `  y ) ) )
5049ad2ant2lr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( x P ( T `
 y ) ) )
51 htthlem.9 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
52 rsp2 2618 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y )  ->  (
( x  e.  X  /\  y  e.  X
)  ->  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) ) )
5351, 52syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) ) )
5453impl 603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )
5554adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( x P ( T `  y
) )  =  ( ( T `  x
) P y ) )
5650, 55eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( ( T `  x
) P y ) )
5756fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  =  ( abs `  ( ( T `  x ) P y ) ) )
58 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  X  /\  ( N `  y )  <_  1 )  -> 
y  e.  X )
594, 16dipcl 21304 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X  /\  y  e.  X )  ->  (
( T `  x
) P y )  e.  CC )
603, 59mp3an1 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( ( T `  x ) P y )  e.  CC )
6110, 58, 60syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( T `
 x ) P y )  e.  CC )
6261abscld 11934 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  e.  RR )
6313adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  RR )
644, 11nvcl 21241 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
653, 64mpan 651 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  X  ->  ( N `  y )  e.  RR )
6665ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  e.  RR )
6763, 66remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  e.  RR )
684, 11, 16, 18sii 21448 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
6910, 58, 68syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
70 1re 8853 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
7170a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  1  e.  RR )
724, 11nvge0 21256 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
733, 10, 72sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
7413, 73jca 518 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  (
( N `  ( T `  x )
)  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )
7574adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  e.  RR  /\  0  <_ 
( N `  ( T `  x )
) ) )
76 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  <_  1
)
77 lemul2a 9627 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N `  y )  e.  RR  /\  1  e.  RR  /\  ( ( N `  ( T `  x ) )  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )  /\  ( N `  y )  <_  1 )  -> 
( ( N `  ( T `  x ) )  x.  ( N `
 y ) )  <_  ( ( N `
 ( T `  x ) )  x.  1 ) )
7866, 71, 75, 76, 77syl31anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  (
( N `  ( T `  x )
)  x.  1 ) )
7963recnd 8877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  CC )
8079mulid1d 8868 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  1 )  =  ( N `  ( T `
 x ) ) )
8178, 80breqtrd 4063 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  ( N `  ( T `  x ) ) )
8262, 67, 63, 69, 81letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( N `  ( T `  x
) ) )
8357, 82eqbrtrd 4059 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) ) )
8437, 83sylan2b 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  ( abs `  ( ( F `
 y ) `  x ) )  <_ 
( N `  ( T `  x )
) )
85 fveq1 5540 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) `  x )  =  ( w `  x ) )
8685fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( F `  y )  =  w  ->  ( abs `  ( ( F `
 y ) `  x ) )  =  ( abs `  (
w `  x )
) )
8786breq1d 4049 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  w  ->  (
( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) )  <->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
8884, 87syl5ibcom 211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  (
( F `  y
)  =  w  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
8988rexlimdva 2680 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  ( E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w  ->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
9034, 89syld 40 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9190ralrimiv 2638 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  A. w  e.  K  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) )
92 breq2 4043 . . . . . . . . . 10  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( ( abs `  ( w `  x ) )  <_ 
z  <->  ( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9392ralbidv 2576 . . . . . . . . 9  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( A. w  e.  K  ( abs `  ( w `  x ) )  <_ 
z  <->  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) ) )
9493rspcev 2897 . . . . . . . 8  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9513, 91, 94syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9695ralrimiva 2639 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  z )
97 imassrn 5041 . . . . . . . . 9  |-  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } )  C_  ran  F
9830, 97eqsstri 3221 . . . . . . . 8  |-  K  C_  ran  F
99 frn 5411 . . . . . . . . 9  |-  ( F : X --> ( U 
BLnOp  W )  ->  ran  F 
C_  ( U  BLnOp  W ) )
10025, 99syl 15 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( U  BLnOp  W ) )
10198, 100syl5ss 3203 . . . . . . 7  |-  ( ph  ->  K  C_  ( U  BLnOp  W ) )
102 hlobn 21483 . . . . . . . . 9  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
1032, 102ax-mp 8 . . . . . . . 8  |-  U  e. 
CBan
10419cnnv 21261 . . . . . . . 8  |-  W  e.  NrmCVec
10519cnnvnm 21266 . . . . . . . . 9  |-  abs  =  ( normCV `  W )
106 eqid 2296 . . . . . . . . 9  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
1074, 105, 106ubth 21468 . . . . . . . 8  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  K  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
108103, 104, 107mp3an12 1267 . . . . . . 7  |-  ( K 
C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `  x
) )  <_  z  <->  E. y  e.  RR  A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y ) )
109101, 108syl 15 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
11096, 109mpbid 201 . . . . 5  |-  ( ph  ->  E. y  e.  RR  A. w  e.  K  ( ( U normOp OLD W
) `  w )  <_  y )
111 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e.  X  /\  ( N `
 x )  <_ 
1 ) )
112 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( N `  z )  =  ( N `  x ) )
113112breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( N `  z
)  <_  1  <->  ( N `  x )  <_  1
) )
114113elrab 2936 . . . . . . . . . . . . . 14  |-  ( x  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( x  e.  X  /\  ( N `  x )  <_  1 ) )
115111, 114sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }
)
116 fdm 5409 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> ( U 
BLnOp  W )  ->  dom  F  =  X )
11725, 116syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
118117eleq2d 2363 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  X ) )
119118biimpar 471 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  F )
120 funfvima 5769 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }  ->  ( F `  x
)  e.  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } ) ) )
12127, 120sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  dom  F )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
122119, 121syldan 456 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
123122ad2ant2r 727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e. 
{ z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
124115, 123mpd 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) )
125124, 30syl6eleqr 2387 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  K
)
126 fveq2 5541 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  x )  ->  (
( U normOp OLD W
) `  w )  =  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
127126breq1d 4049 . . . . . . . . . . . 12  |-  ( w  =  ( F `  x )  ->  (
( ( U normOp OLD W ) `  w
)  <_  y  <->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
)
128127rspcv 2893 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  K  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( U normOp OLD W
) `  ( F `  x ) )  <_ 
y ) )
129125, 128syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)
13013ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  RR )
131130, 130remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
132 ffvelrn 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : X --> ( U 
BLnOp  W )  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13325, 132sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13419cnnvba 21263 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  ( BaseSet `  W )
1354, 134, 106, 20nmblore 21380 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
1363, 104, 135mp3an12 1267 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
137133, 136syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  (
( U normOp OLD W
) `  ( F `  x ) )  e.  RR )
138137ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
139138, 130remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
140 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  y  e.  RR )
141140, 130remulcld 8879 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( y  x.  ( N `  ( T `  x )
) )  e.  RR )
142 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  x  ->  ( T `  z )  =  ( T `  x ) )
143142oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  x  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  x
) ) )
144143mpteq2dv 4123 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  x  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x ) ) ) )
14541mptex 5762 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  e.  _V
146144, 24, 145fvmpt 5618 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  X  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
147146adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
148147fveq1d 5543 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( w  e.  X  |->  ( w P ( T `  x
) ) ) `  ( T `  x ) ) )
149 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( T `  x )  ->  (
w P ( T `
 x ) )  =  ( ( T `
 x ) P ( T `  x
) ) )
150 eqid 2296 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) )
151 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( T `  x ) P ( T `  x ) )  e. 
_V
152149, 150, 151fvmpt 5618 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T `  x )  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
15310, 152syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
154148, 153eqtrd 2328 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( T `  x ) P ( T `  x ) ) )
155154ad2ant2r 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( T `  x
) P ( T `
 x ) ) )
15610ad2ant2r 727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( T `  x )  e.  X
)
1574, 11, 16ipidsq 21302 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  (
( T `  x
) P ( T `
 x ) )  =  ( ( N `
 ( T `  x ) ) ^
2 ) )
1583, 156, 157sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( T `  x ) P ( T `  x ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
159155, 158eqtrd 2328 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( N `  ( T `  x )
) ^ 2 ) )
160159fveq2d 5545 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( abs `  ( ( N `  ( T `
 x ) ) ^ 2 ) ) )
161 resqcl 11187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  (
( N `  ( T `  x )
) ^ 2 )  e.  RR )
162 sqge0 11196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  0  <_  ( ( N `  ( T `  x ) ) ^ 2 ) )
163161, 162absidd 11921 . . . . . . . . . . . . . . . . . 18  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  ( abs `  ( ( N `
 ( T `  x ) ) ^
2 ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
164130, 163syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( N `  ( T `  x ) ) ^ 2 ) )  =  ( ( N `  ( T `
 x ) ) ^ 2 ) )
165130recnd 8877 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  CC )
166165sqvald 11258 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) ) ^
2 )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
167160, 164, 1663eqtrd 2332 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
168133ad2ant2r 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x )  e.  ( U  BLnOp  W )
)
1694, 11, 105, 106, 20, 3, 104nmblolbi 21394 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  x
)  e.  ( U 
BLnOp  W )  /\  ( T `  x )  e.  X )  ->  ( abs `  ( ( F `
 x ) `  ( T `  x ) ) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
170168, 156, 169syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
171167, 170eqbrtrrd 4061 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
1723, 156, 72sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( N `  ( T `
 x ) ) )
173 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
174138, 140, 130, 172, 173lemul1ad 9712 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
175131, 139, 141, 171, 174letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
176 lemul1 9624 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( N `  ( T `  x ) )  <_  y  <->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) ) )
177176biimprd 214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( ( N `
 ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) )  ->  ( N `  ( T `  x ) )  <_  y )
)
1781773expia 1153 . . . . . . . . . . . . . . . 16  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( N `
 ( T `  x ) )  e.  RR  /\  0  < 
( N `  ( T `  x )
) )  ->  (
( ( N `  ( T `  x ) )  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
179178expdimp 426 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N `  ( T `  x ) )  e.  RR  /\  y  e.  RR )  /\  ( N `  ( T `  x )
)  e.  RR )  ->  ( 0  < 
( N `  ( T `  x )
)  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
180130, 140, 130, 179syl21anc 1181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
181175, 180mpid 37 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
182 0re 8854 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
183182a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  e.  RR )
1844, 134, 20blof 21379 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( F `  x ) : X --> CC )
1853, 104, 184mp3an12 1267 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( F `  x ) : X --> CC )
186133, 185syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x ) : X --> CC )
187186ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x ) : X --> CC )
1884, 134, 106nmooge0 21361 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x ) : X --> CC )  ->  0  <_ 
( ( U normOp OLD W ) `  ( F `  x )
) )
1893, 104, 188mp3an12 1267 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x ) : X --> CC  ->  0  <_  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
190187, 189syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( ( U normOp OLD W
) `  ( F `  x ) ) )
191183, 138, 140, 190, 173letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  y )
192 breq1 4042 . . . . . . . . . . . . . 14  |-  ( 0  =  ( N `  ( T `  x ) )  ->  ( 0  <_  y  <->  ( N `  ( T `  x
) )  <_  y
) )
193191, 192syl5ibcom 211 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  =  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
194 leloe 8924 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( N `  ( T `
 x ) )  e.  RR )  -> 
( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) ) )
195182, 130, 194sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  < 
( N `  ( T `  x )
)  \/  0  =  ( N `  ( T `  x )
) ) ) )
196172, 195mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) )
197181, 193, 196mpjaod 370 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  <_  y
)
198197expr 598 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( ( U normOp OLD W ) `  ( F `  x )
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
199198adantrr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
200129, 199syld 40 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( N `  ( T `  x )
)  <_  y )
)
201200expr 598 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( N `  x
)  <_  1  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
202201com23 72 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
203202ralrimdva 2646 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y  ->  A. x  e.  X  ( ( N `  x )  <_  1  ->  ( N `  ( T `  x
) )  <_  y
) ) )
204203reximdva 2668 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
205110, 204mpd 14 . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) )
206 eqid 2296 . . . . . 6  |-  ( U
normOp OLD U )  =  ( U normOp OLD U
)
2074, 4, 11, 11, 206, 3, 3nmobndi 21369 . . . . 5  |-  ( T : X --> X  -> 
( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
2088, 207syl 15 . . . 4  |-  ( ph  ->  ( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
209205, 208mpbird 223 . . 3  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  e.  RR )
210 ltpnf 10479 . . 3  |-  ( ( ( U normOp OLD U
) `  T )  e.  RR  ->  ( ( U normOp OLD U ) `  T )  <  +oo )
211209, 210syl 15 . 2  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  <  +oo )
212 htth.4 . . . 4  |-  B  =  ( U  BLnOp  U )
213206, 5, 212isblo 21376 . . 3  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) ) )
2143, 3, 213mp2an 653 . 2  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) )
2151, 211, 214sylanbrc 645 1  |-  ( ph  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560    C_ wss 3165   <.cop 3656   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884   2c2 9811   ^cexp 11120   abscabs 11735   NrmCVeccnv 21156   BaseSetcba 21158   normCVcnmcv 21162   .i OLDcdip 21289    LnOp clno 21334   normOp OLDcnmoo 21335    BLnOp cblo 21336   CPreHil OLDccphlo 21406   CBanccbn 21457   CHil
OLDchlo 21480
This theorem is referenced by:  htth  21514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-dc 8088  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cn 16973  df-cnp 16974  df-lm 16975  df-t1 17058  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-fcls 17652  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-cfil 18697  df-cau 18698  df-cmet 18699  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-dip 21290  df-lno 21338  df-nmoo 21339  df-blo 21340  df-0o 21341  df-ph 21407  df-cbn 21458  df-hlo 21481
  Copyright terms: Public domain W3C validator