HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32 Unicode version

Theorem hvadd32 21629
Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd32  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( ( A  +h  C )  +h  B ) )

Proof of Theorem hvadd32
StepHypRef Expression
1 ax-hvcom 21597 . . . 4  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( B  +h  C
)  =  ( C  +h  B ) )
21oveq2d 5890 . . 3  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( A  +h  ( B  +h  C ) )  =  ( A  +h  ( C  +h  B
) ) )
323adant1 973 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( A  +h  ( B  +h  C ) )  =  ( A  +h  ( C  +h  B ) ) )
4 ax-hvass 21598 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( A  +h  ( B  +h  C
) ) )
5 ax-hvass 21598 . . 3  |-  ( ( A  e.  ~H  /\  C  e.  ~H  /\  B  e.  ~H )  ->  (
( A  +h  C
)  +h  B )  =  ( A  +h  ( C  +h  B
) ) )
653com23 1157 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  C
)  +h  B )  =  ( A  +h  ( C  +h  B
) ) )
73, 4, 63eqtr4d 2338 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( ( A  +h  C )  +h  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696  (class class class)co 5874   ~Hchil 21515    +h cva 21516
This theorem is referenced by:  hvadd4  21631  hvadd32i  21649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-hvcom 21597  ax-hvass 21598
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator