HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32i Structured version   Unicode version

Theorem hvadd32i 22556
Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1  |-  A  e. 
~H
hvass.2  |-  B  e. 
~H
hvass.3  |-  C  e. 
~H
Assertion
Ref Expression
hvadd32i  |-  ( ( A  +h  B )  +h  C )  =  ( ( A  +h  C )  +h  B
)

Proof of Theorem hvadd32i
StepHypRef Expression
1 hvass.1 . 2  |-  A  e. 
~H
2 hvass.2 . 2  |-  B  e. 
~H
3 hvass.3 . 2  |-  C  e. 
~H
4 hvadd32 22536 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  +h  B
)  +h  C )  =  ( ( A  +h  C )  +h  B ) )
51, 2, 3, 4mp3an 1279 1  |-  ( ( A  +h  B )  +h  C )  =  ( ( A  +h  C )  +h  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725  (class class class)co 6081   ~Hchil 22422    +h cva 22423
This theorem is referenced by:  hvsubeq0i  22565  hvaddcani  22567  normpar2i  22658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-hvcom 22504  ax-hvass 22505
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084
  Copyright terms: Public domain W3C validator