HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcani Unicode version

Theorem hvaddcani 22524
Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1  |-  A  e. 
~H
hvnegdi.2  |-  B  e. 
~H
hvaddcan.3  |-  C  e. 
~H
Assertion
Ref Expression
hvaddcani  |-  ( ( A  +h  B )  =  ( A  +h  C )  <->  B  =  C )

Proof of Theorem hvaddcani
StepHypRef Expression
1 oveq1 6051 . . 3  |-  ( ( A  +h  B )  =  ( A  +h  C )  ->  (
( A  +h  B
)  +h  ( -u
1  .h  A ) )  =  ( ( A  +h  C )  +h  ( -u 1  .h  A ) ) )
2 hvnegdi.1 . . . . 5  |-  A  e. 
~H
3 hvnegdi.2 . . . . 5  |-  B  e. 
~H
4 neg1cn 10027 . . . . . 6  |-  -u 1  e.  CC
54, 2hvmulcli 22474 . . . . 5  |-  ( -u
1  .h  A )  e.  ~H
62, 3, 5hvadd32i 22513 . . . 4  |-  ( ( A  +h  B )  +h  ( -u 1  .h  A ) )  =  ( ( A  +h  ( -u 1  .h  A
) )  +h  B
)
72hvnegidi 22489 . . . . 5  |-  ( A  +h  ( -u 1  .h  A ) )  =  0h
87oveq1i 6054 . . . 4  |-  ( ( A  +h  ( -u
1  .h  A ) )  +h  B )  =  ( 0h  +h  B )
93hvaddid2i 22488 . . . 4  |-  ( 0h 
+h  B )  =  B
106, 8, 93eqtri 2432 . . 3  |-  ( ( A  +h  B )  +h  ( -u 1  .h  A ) )  =  B
11 hvaddcan.3 . . . . 5  |-  C  e. 
~H
122, 11, 5hvadd32i 22513 . . . 4  |-  ( ( A  +h  C )  +h  ( -u 1  .h  A ) )  =  ( ( A  +h  ( -u 1  .h  A
) )  +h  C
)
137oveq1i 6054 . . . 4  |-  ( ( A  +h  ( -u
1  .h  A ) )  +h  C )  =  ( 0h  +h  C )
1411hvaddid2i 22488 . . . 4  |-  ( 0h 
+h  C )  =  C
1512, 13, 143eqtri 2432 . . 3  |-  ( ( A  +h  C )  +h  ( -u 1  .h  A ) )  =  C
161, 10, 153eqtr3g 2463 . 2  |-  ( ( A  +h  B )  =  ( A  +h  C )  ->  B  =  C )
17 oveq2 6052 . 2  |-  ( B  =  C  ->  ( A  +h  B )  =  ( A  +h  C
) )
1816, 17impbii 181 1  |-  ( ( A  +h  B )  =  ( A  +h  C )  <->  B  =  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721  (class class class)co 6044   1c1 8951   -ucneg 9252   ~Hchil 22379    +h cva 22380    .h csm 22381   0hc0v 22384
This theorem is referenced by:  hvsubaddi  22525  hvaddcan  22529
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-hvcom 22461  ax-hvass 22462  ax-hv0cl 22463  ax-hvaddid 22464  ax-hfvmul 22465  ax-hvmulid 22466  ax-hvdistr2 22469  ax-hvmul0 22470
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-ltxr 9085  df-sub 9253  df-neg 9254  df-hvsub 22431
  Copyright terms: Public domain W3C validator