HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvcomi Unicode version

Theorem hvcomi 21615
Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvaddcl.1  |-  A  e. 
~H
hvaddcl.2  |-  B  e. 
~H
Assertion
Ref Expression
hvcomi  |-  ( A  +h  B )  =  ( B  +h  A
)

Proof of Theorem hvcomi
StepHypRef Expression
1 hvaddcl.1 . 2  |-  A  e. 
~H
2 hvaddcl.2 . 2  |-  B  e. 
~H
3 ax-hvcom 21597 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  +h  B
)  =  ( B  +h  A ) )
41, 2, 3mp2an 653 1  |-  ( A  +h  B )  =  ( B  +h  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696  (class class class)co 5874   ~Hchil 21515    +h cva 21516
This theorem is referenced by:  hvadd12i  21652  hvnegdii  21657  norm3difi  21742  normpar2i  21751  nonbooli  22246  lnophmlem2  22613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-hvcom 21597
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator