Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapfval Unicode version

Theorem hvmapfval 32571
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h  |-  H  =  ( LHyp `  K
)
hvmapval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hvmapval.o  |-  O  =  ( ( ocH `  K
) `  W )
hvmapval.v  |-  V  =  ( Base `  U
)
hvmapval.p  |-  .+  =  ( +g  `  U )
hvmapval.t  |-  .x.  =  ( .s `  U )
hvmapval.z  |-  .0.  =  ( 0g `  U )
hvmapval.s  |-  S  =  (Scalar `  U )
hvmapval.r  |-  R  =  ( Base `  S
)
hvmapval.m  |-  M  =  ( (HVMap `  K
) `  W )
hvmapval.k  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
Assertion
Ref Expression
hvmapfval  |-  ( ph  ->  M  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
Distinct variable groups:    t, j,
v, x, K    t, W    t, O    R, j    x, V    j, W, v, x    x,  .0.
Allowed substitution hints:    ph( x, v, t, j)    A( x, v, t, j)    .+ ( x, v, t, j)    R( x, v, t)    S( x, v, t, j)    .x. ( x, v, t, j)    U( x, v, t, j)    H( x, v, t, j)    M( x, v, t, j)    O( x, v, j)    V( v, t, j)    .0. ( v,
t, j)

Proof of Theorem hvmapfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hvmapval.k . 2  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
2 hvmapval.m . . . 4  |-  M  =  ( (HVMap `  K
) `  W )
3 hvmapval.h . . . . . 6  |-  H  =  ( LHyp `  K
)
43hvmapffval 32570 . . . . 5  |-  ( K  e.  A  ->  (HVMap `  K )  =  ( w  e.  H  |->  ( x  e.  ( (
Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
54fveq1d 5543 . . . 4  |-  ( K  e.  A  ->  (
(HVMap `  K ) `  W )  =  ( ( w  e.  H  |->  ( x  e.  ( ( Base `  (
( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) `  W
) )
62, 5syl5eq 2340 . . 3  |-  ( K  e.  A  ->  M  =  ( ( w  e.  H  |->  ( x  e.  ( ( Base `  ( ( DVecH `  K
) `  w )
)  \  { ( 0g `  ( ( DVecH `  K ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  K ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) ) ) ) `
 W ) )
7 fveq2 5541 . . . . . . . . 9  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
8 hvmapval.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
97, 8syl6eqr 2346 . . . . . . . 8  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  U )
109fveq2d 5545 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  ( ( DVecH `  K ) `  w
) )  =  (
Base `  U )
)
11 hvmapval.v . . . . . . 7  |-  V  =  ( Base `  U
)
1210, 11syl6eqr 2346 . . . . . 6  |-  ( w  =  W  ->  ( Base `  ( ( DVecH `  K ) `  w
) )  =  V )
139fveq2d 5545 . . . . . . . 8  |-  ( w  =  W  ->  ( 0g `  ( ( DVecH `  K ) `  w
) )  =  ( 0g `  U ) )
14 hvmapval.z . . . . . . . 8  |-  .0.  =  ( 0g `  U )
1513, 14syl6eqr 2346 . . . . . . 7  |-  ( w  =  W  ->  ( 0g `  ( ( DVecH `  K ) `  w
) )  =  .0.  )
1615sneqd 3666 . . . . . 6  |-  ( w  =  W  ->  { ( 0g `  ( (
DVecH `  K ) `  w ) ) }  =  {  .0.  }
)
1712, 16difeq12d 3308 . . . . 5  |-  ( w  =  W  ->  (
( Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  =  ( V  \  {  .0.  } ) )
189fveq2d 5545 . . . . . . . . . 10  |-  ( w  =  W  ->  (Scalar `  ( ( DVecH `  K
) `  w )
)  =  (Scalar `  U ) )
19 hvmapval.s . . . . . . . . . 10  |-  S  =  (Scalar `  U )
2018, 19syl6eqr 2346 . . . . . . . . 9  |-  ( w  =  W  ->  (Scalar `  ( ( DVecH `  K
) `  w )
)  =  S )
2120fveq2d 5545 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) )  =  ( Base `  S
) )
22 hvmapval.r . . . . . . . 8  |-  R  =  ( Base `  S
)
2321, 22syl6eqr 2346 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) )  =  R )
24 fveq2 5541 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ( ( ocH `  K ) `  W
) )
25 hvmapval.o . . . . . . . . . 10  |-  O  =  ( ( ocH `  K
) `  W )
2624, 25syl6eqr 2346 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  O )
2726fveq1d 5543 . . . . . . . 8  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  { x } )  =  ( O `  { x } ) )
289fveq2d 5545 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  ( ( DVecH `  K ) `  w
) )  =  ( +g  `  U ) )
29 hvmapval.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  U )
3028, 29syl6eqr 2346 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  ( ( DVecH `  K ) `  w
) )  =  .+  )
31 eqidd 2297 . . . . . . . . . 10  |-  ( w  =  W  ->  t  =  t )
329fveq2d 5545 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .s `  ( ( DVecH `  K ) `  w
) )  =  ( .s `  U ) )
33 hvmapval.t . . . . . . . . . . . 12  |-  .x.  =  ( .s `  U )
3432, 33syl6eqr 2346 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .s `  ( ( DVecH `  K ) `  w
) )  =  .x.  )
3534oveqd 5891 . . . . . . . . . 10  |-  ( w  =  W  ->  (
j ( .s `  ( ( DVecH `  K
) `  w )
) x )  =  ( j  .x.  x
) )
3630, 31, 35oveq123d 5895 . . . . . . . . 9  |-  ( w  =  W  ->  (
t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) )  =  ( t  .+  ( j  .x.  x
) ) )
3736eqeq2d 2307 . . . . . . . 8  |-  ( w  =  W  ->  (
v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) )  <-> 
v  =  ( t 
.+  ( j  .x.  x ) ) ) )
3827, 37rexeqbidv 2762 . . . . . . 7  |-  ( w  =  W  ->  ( E. t  e.  (
( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) )  <->  E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) )
3923, 38riotaeqbidv 6323 . . . . . 6  |-  ( w  =  W  ->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) )  =  ( iota_ j  e.  R E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) )
4012, 39mpteq12dv 4114 . . . . 5  |-  ( w  =  W  ->  (
v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) )  =  ( v  e.  V  |->  ( iota_ j  e.  R E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) ) )
4117, 40mpteq12dv 4114 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( (
Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) )  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
42 eqid 2296 . . . 4  |-  ( w  e.  H  |->  ( x  e.  ( ( Base `  ( ( DVecH `  K
) `  w )
)  \  { ( 0g `  ( ( DVecH `  K ) `  w
) ) } ) 
|->  ( v  e.  (
Base `  ( ( DVecH `  K ) `  w ) )  |->  (
iota_ j  e.  ( Base `  (Scalar `  (
( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K
) `  w ) `  { x } ) v  =  ( t ( +g  `  (
( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K
) `  w )
) x ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ( ( Base `  (
( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) )
43 fvex 5555 . . . . . . 7  |-  ( Base `  U )  e.  _V
4411, 43eqeltri 2366 . . . . . 6  |-  V  e. 
_V
45 difexg 4178 . . . . . 6  |-  ( V  e.  _V  ->  ( V  \  {  .0.  }
)  e.  _V )
4644, 45ax-mp 8 . . . . 5  |-  ( V 
\  {  .0.  }
)  e.  _V
4746mptex 5762 . . . 4  |-  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) )  e.  _V
4841, 42, 47fvmpt 5618 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( x  e.  ( ( Base `  (
( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K
) `  w )
) ) E. t  e.  ( ( ( ocH `  K ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  K
) `  w )
) ( j ( .s `  ( (
DVecH `  K ) `  w ) ) x ) ) ) ) ) ) `  W
)  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
496, 48sylan9eq 2348 . 2  |-  ( ( K  e.  A  /\  W  e.  H )  ->  M  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
501, 49syl 15 1  |-  ( ph  ->  M  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    \ cdif 3162   {csn 3653    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   0gc0g 13416   LHypclh 30795   DVecHcdvh 31890   ocHcoch 32159  HVMapchvm 32568
This theorem is referenced by:  hvmapval  32572  hvmap1o  32575  hvmaplkr  32580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-hvmap 32569
  Copyright terms: Public domain W3C validator