MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1 Unicode version

Theorem i1f1 19450
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
Assertion
Ref Expression
i1f1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem i1f1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 i1f1.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  if ( x  e.  A ,  1 ,  0 ) )
21i1f1lem 19449 . . . . 5  |-  ( F : RR --> { 0 ,  1 }  /\  ( A  e.  dom  vol 
->  ( `' F " { 1 } )  =  A ) )
32simpli 445 . . . 4  |-  F : RR
--> { 0 ,  1 }
4 0re 9025 . . . . 5  |-  0  e.  RR
5 1re 9024 . . . . 5  |-  1  e.  RR
6 prssi 3898 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
74, 5, 6mp2an 654 . . . 4  |-  { 0 ,  1 }  C_  RR
8 fss 5540 . . . 4  |-  ( ( F : RR --> { 0 ,  1 }  /\  { 0 ,  1 } 
C_  RR )  ->  F : RR --> RR )
93, 7, 8mp2an 654 . . 3  |-  F : RR
--> RR
109a1i 11 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F : RR --> RR )
11 prfi 7318 . . 3  |-  { 0 ,  1 }  e.  Fin
12 1ex 9020 . . . . . . . 8  |-  1  e.  _V
1312prid2 3857 . . . . . . 7  |-  1  e.  { 0 ,  1 }
14 c0ex 9019 . . . . . . . 8  |-  0  e.  _V
1514prid1 3856 . . . . . . 7  |-  0  e.  { 0 ,  1 }
1613, 15keepel 3740 . . . . . 6  |-  if ( x  e.  A , 
1 ,  0 )  e.  { 0 ,  1 }
1716a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  x  e.  RR )  ->  if ( x  e.  A ,  1 ,  0 )  e. 
{ 0 ,  1 } )
1817, 1fmptd 5833 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F : RR --> { 0 ,  1 } )
19 frn 5538 . . . 4  |-  ( F : RR --> { 0 ,  1 }  ->  ran 
F  C_  { 0 ,  1 } )
2018, 19syl 16 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ran  F  C_  { 0 ,  1 } )
21 ssfi 7266 . . 3  |-  ( ( { 0 ,  1 }  e.  Fin  /\  ran  F  C_  { 0 ,  1 } )  ->  ran  F  e.  Fin )
2211, 20, 21sylancr 645 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ran  F  e.  Fin )
233, 19ax-mp 8 . . . . . . . . . . 11  |-  ran  F  C_ 
{ 0 ,  1 }
24 df-pr 3765 . . . . . . . . . . . 12  |-  { 0 ,  1 }  =  ( { 0 }  u.  { 1 } )
2524equncomi 3437 . . . . . . . . . . 11  |-  { 0 ,  1 }  =  ( { 1 }  u.  { 0 } )
2623, 25sseqtri 3324 . . . . . . . . . 10  |-  ran  F  C_  ( { 1 }  u.  { 0 } )
27 ssdif 3426 . . . . . . . . . 10  |-  ( ran 
F  C_  ( {
1 }  u.  {
0 } )  -> 
( ran  F  \  {
0 } )  C_  ( ( { 1 }  u.  { 0 } )  \  {
0 } ) )
2826, 27ax-mp 8 . . . . . . . . 9  |-  ( ran 
F  \  { 0 } )  C_  (
( { 1 }  u.  { 0 } )  \  { 0 } )
29 difun2 3651 . . . . . . . . . 10  |-  ( ( { 1 }  u.  { 0 } )  \  { 0 } )  =  ( { 1 }  \  { 0 } )
30 difss 3418 . . . . . . . . . 10  |-  ( { 1 }  \  {
0 } )  C_  { 1 }
3129, 30eqsstri 3322 . . . . . . . . 9  |-  ( ( { 1 }  u.  { 0 } )  \  { 0 } ) 
C_  { 1 }
3228, 31sstri 3301 . . . . . . . 8  |-  ( ran 
F  \  { 0 } )  C_  { 1 }
3332sseli 3288 . . . . . . 7  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  y  e.  {
1 } )
34 elsni 3782 . . . . . . 7  |-  ( y  e.  { 1 }  ->  y  =  1 )
3533, 34syl 16 . . . . . 6  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  y  =  1 )
3635sneqd 3771 . . . . 5  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  { y }  =  { 1 } )
3736imaeq2d 5144 . . . 4  |-  ( y  e.  ( ran  F  \  { 0 } )  ->  ( `' F " { y } )  =  ( `' F " { 1 } ) )
382simpri 449 . . . . 5  |-  ( A  e.  dom  vol  ->  ( `' F " { 1 } )  =  A )
3938adantr 452 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  ( `' F " { 1 } )  =  A )
4037, 39sylan9eqr 2442 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  =  A )
41 simpll 731 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  A  e.  dom  vol )
4240, 41eqeltrd 2462 . 2  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
4340fveq2d 5673 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol `  A
) )
44 simplr 732 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  A
)  e.  RR )
4543, 44eqeltrd 2462 . 2  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR )  /\  y  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { y } ) )  e.  RR )
4610, 22, 42, 45i1fd 19441 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR )  ->  F  e.  dom  S.1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    \ cdif 3261    u. cun 3262    C_ wss 3264   ifcif 3683   {csn 3758   {cpr 3759    e. cmpt 4208   `'ccnv 4818   dom cdm 4819   ran crn 4820   "cima 4822   -->wf 5391   ` cfv 5395   Fincfn 7046   RRcr 8923   0cc0 8924   1c1 8925   volcvol 19228   S.1citg1 19375
This theorem is referenced by:  itg11  19451  itg2const  19500  itg2addnclem  25958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xadd 10644  df-ioo 10853  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408  df-xmet 16620  df-met 16621  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381
  Copyright terms: Public domain W3C validator