MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fd Unicode version

Theorem i1fd 19036
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fd.1  |-  ( ph  ->  F : RR --> RR )
i1fd.2  |-  ( ph  ->  ran  F  e.  Fin )
i1fd.3  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { x } )  e.  dom  vol )
i1fd.4  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
Assertion
Ref Expression
i1fd  |-  ( ph  ->  F  e.  dom  S.1 )
Distinct variable groups:    x, F    ph, x

Proof of Theorem i1fd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 i1fd.1 . . . . . . . . . 10  |-  ( ph  ->  F : RR --> RR )
21ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  F : RR --> RR )
3 ffun 5391 . . . . . . . . 9  |-  ( F : RR --> RR  ->  Fun 
F )
4 funcnvcnv 5308 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  `' `' F )
52, 3, 43syl 18 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  Fun  `' `' F
)
6 imadif 5327 . . . . . . . 8  |-  ( Fun  `' `' F  ->  ( `' F " ( RR 
\  ( RR  \  x ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) ) )
75, 6syl 15 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  ( RR  \  x ) ) )  =  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) ) )
8 ioof 10741 . . . . . . . . . . . . 13  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
9 frn 5395 . . . . . . . . . . . . 13  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  ran  (,)  C_  ~P RR )
108, 9ax-mp 8 . . . . . . . . . . . 12  |-  ran  (,)  C_ 
~P RR
1110sseli 3176 . . . . . . . . . . 11  |-  ( x  e.  ran  (,)  ->  x  e.  ~P RR )
12 elpwi 3633 . . . . . . . . . . 11  |-  ( x  e.  ~P RR  ->  x 
C_  RR )
1311, 12syl 15 . . . . . . . . . 10  |-  ( x  e.  ran  (,)  ->  x 
C_  RR )
1413ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  x  C_  RR )
15 dfss4 3403 . . . . . . . . 9  |-  ( x 
C_  RR  <->  ( RR  \ 
( RR  \  x
) )  =  x )
1614, 15sylib 188 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( RR  \  ( RR  \  x ) )  =  x )
1716imaeq2d 5012 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  ( RR  \  x ) ) )  =  ( `' F " x ) )
187, 17eqtr3d 2317 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( ( `' F " RR )  \  ( `' F " ( RR 
\  x ) ) )  =  ( `' F " x ) )
19 fimacnv 5657 . . . . . . . . 9  |-  ( F : RR --> RR  ->  ( `' F " RR )  =  RR )
202, 19syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F " RR )  =  RR )
21 rembl 18898 . . . . . . . 8  |-  RR  e.  dom  vol
2220, 21syl6eqel 2371 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F " RR )  e.  dom  vol )
231adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  F : RR --> RR )
24 inpreima 5652 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( `' F " ( y  i^i 
ran  F ) )  =  ( ( `' F " y )  i^i  ( `' F " ran  F ) ) )
25 iunid 3957 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  ( y  i^i  ran  F ) { x }  =  ( y  i^i 
ran  F )
2625imaeq2i 5010 . . . . . . . . . . . . . . 15  |-  ( `' F " U_ x  e.  ( y  i^i  ran  F ) { x }
)  =  ( `' F " ( y  i^i  ran  F )
)
27 imaiun 5771 . . . . . . . . . . . . . . 15  |-  ( `' F " U_ x  e.  ( y  i^i  ran  F ) { x }
)  =  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )
2826, 27eqtr3i 2305 . . . . . . . . . . . . . 14  |-  ( `' F " ( y  i^i  ran  F )
)  =  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )
29 cnvimass 5033 . . . . . . . . . . . . . . . 16  |-  ( `' F " y ) 
C_  dom  F
30 cnvimarndm 5034 . . . . . . . . . . . . . . . 16  |-  ( `' F " ran  F
)  =  dom  F
3129, 30sseqtr4i 3211 . . . . . . . . . . . . . . 15  |-  ( `' F " y ) 
C_  ( `' F " ran  F )
32 df-ss 3166 . . . . . . . . . . . . . . 15  |-  ( ( `' F " y ) 
C_  ( `' F " ran  F )  <->  ( ( `' F " y )  i^i  ( `' F " ran  F ) )  =  ( `' F " y ) )
3331, 32mpbi 199 . . . . . . . . . . . . . 14  |-  ( ( `' F " y )  i^i  ( `' F " ran  F ) )  =  ( `' F " y )
3424, 28, 333eqtr3g 2338 . . . . . . . . . . . . 13  |-  ( Fun 
F  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  =  ( `' F " y ) )
3523, 3, 343syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  0  e.  y )  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  =  ( `' F " y ) )
36 i1fd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  F  e.  Fin )
3736adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  0  e.  y )  ->  ran  F  e.  Fin )
38 inss2 3390 . . . . . . . . . . . . . 14  |-  ( y  i^i  ran  F )  C_ 
ran  F
39 ssfi 7083 . . . . . . . . . . . . . 14  |-  ( ( ran  F  e.  Fin  /\  ( y  i^i  ran  F )  C_  ran  F )  ->  ( y  i^i 
ran  F )  e. 
Fin )
4037, 38, 39sylancl 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
y  i^i  ran  F )  e.  Fin )
41 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ph )
42 inss1 3389 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  i^i  ran  F )  C_  y
4342sseli 3176 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  ( y  i^i 
ran  F )  -> 
0  e.  y )
4443con3i 127 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  0  e.  y  ->  -.  0  e.  (
y  i^i  ran  F ) )
4544adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  -.  0  e.  y )  ->  -.  0  e.  ( y  i^i  ran  F ) )
46 disjsn 3693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  -.  0  e.  ( y  i^i  ran  F ) )
4745, 46sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
( y  i^i  ran  F )  i^i  { 0 } )  =  (/) )
48 reldisj 3498 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  i^i  ran  F
)  C_  ran  F  -> 
( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  ( y  i^i 
ran  F )  C_  ( ran  F  \  {
0 } ) ) )
4938, 48ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  i^i  ran  F )  i^i  { 0 } )  =  (/)  <->  (
y  i^i  ran  F ) 
C_  ( ran  F  \  { 0 } ) )
5047, 49sylib 188 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  0  e.  y )  ->  (
y  i^i  ran  F ) 
C_  ( ran  F  \  { 0 } ) )
5150sselda 3180 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  x  e.  ( ran  F  \  {
0 } ) )
52 i1fd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( `' F " { x } )  e.  dom  vol )
5341, 51, 52syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( `' F " { x }
)  e.  dom  vol )
5453ralrimiva 2626 . . . . . . . . . . . . 13  |-  ( (
ph  /\  -.  0  e.  y )  ->  A. x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  e.  dom  vol )
55 finiunmbl 18901 . . . . . . . . . . . . 13  |-  ( ( ( y  i^i  ran  F )  e.  Fin  /\  A. x  e.  ( y  i^i  ran  F )
( `' F " { x } )  e.  dom  vol )  ->  U_ x  e.  ( y  i^i  ran  F
) ( `' F " { x } )  e.  dom  vol )
5640, 54, 55syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  0  e.  y )  ->  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } )  e.  dom  vol )
5735, 56eqeltrrd 2358 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( `' F " y )  e.  dom  vol )
5857ex 423 . . . . . . . . . 10  |-  ( ph  ->  ( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol ) )
5958alrimiv 1617 . . . . . . . . 9  |-  ( ph  ->  A. y ( -.  0  e.  y  -> 
( `' F "
y )  e.  dom  vol ) )
6059ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  A. y ( -.  0  e.  y  -> 
( `' F "
y )  e.  dom  vol ) )
61 elndif 3300 . . . . . . . . 9  |-  ( 0  e.  x  ->  -.  0  e.  ( RR  \  x ) )
6261adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  -.  0  e.  ( RR  \  x ) )
63 reex 8828 . . . . . . . . . 10  |-  RR  e.  _V
64 difexg 4162 . . . . . . . . . 10  |-  ( RR  e.  _V  ->  ( RR  \  x )  e. 
_V )
6563, 64ax-mp 8 . . . . . . . . 9  |-  ( RR 
\  x )  e. 
_V
66 eleq2 2344 . . . . . . . . . . 11  |-  ( y  =  ( RR  \  x )  ->  (
0  e.  y  <->  0  e.  ( RR  \  x
) ) )
6766notbid 285 . . . . . . . . . 10  |-  ( y  =  ( RR  \  x )  ->  ( -.  0  e.  y  <->  -.  0  e.  ( RR 
\  x ) ) )
68 imaeq2 5008 . . . . . . . . . . 11  |-  ( y  =  ( RR  \  x )  ->  ( `' F " y )  =  ( `' F " ( RR  \  x
) ) )
6968eleq1d 2349 . . . . . . . . . 10  |-  ( y  =  ( RR  \  x )  ->  (
( `' F "
y )  e.  dom  vol  <->  ( `' F " ( RR 
\  x ) )  e.  dom  vol )
)
7067, 69imbi12d 311 . . . . . . . . 9  |-  ( y  =  ( RR  \  x )  ->  (
( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol )  <->  ( -.  0  e.  ( RR  \  x )  ->  ( `' F " ( RR 
\  x ) )  e.  dom  vol )
) )
7165, 70spcv 2874 . . . . . . . 8  |-  ( A. y ( -.  0  e.  y  ->  ( `' F " y )  e.  dom  vol )  ->  ( -.  0  e.  ( RR  \  x
)  ->  ( `' F " ( RR  \  x ) )  e. 
dom  vol ) )
7260, 62, 71sylc 56 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
( RR  \  x
) )  e.  dom  vol )
73 difmbl 18900 . . . . . . 7  |-  ( ( ( `' F " RR )  e.  dom  vol 
/\  ( `' F " ( RR  \  x
) )  e.  dom  vol )  ->  ( ( `' F " RR ) 
\  ( `' F " ( RR  \  x
) ) )  e. 
dom  vol )
7422, 72, 73syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( ( `' F " RR )  \  ( `' F " ( RR 
\  x ) ) )  e.  dom  vol )
7518, 74eqeltrrd 2358 . . . . 5  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  0  e.  x )  ->  ( `' F "
x )  e.  dom  vol )
76 eleq2 2344 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
0  e.  y  <->  0  e.  x ) )
7776notbid 285 . . . . . . . . . 10  |-  ( y  =  x  ->  ( -.  0  e.  y  <->  -.  0  e.  x ) )
78 imaeq2 5008 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( `' F " y )  =  ( `' F " x ) )
7978eleq1d 2349 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( `' F "
y )  e.  dom  vol  <->  ( `' F " x )  e.  dom  vol )
)
8077, 79imbi12d 311 . . . . . . . . 9  |-  ( y  =  x  ->  (
( -.  0  e.  y  ->  ( `' F " y )  e. 
dom  vol )  <->  ( -.  0  e.  x  ->  ( `' F " x )  e.  dom  vol )
) )
8180spv 1938 . . . . . . . 8  |-  ( A. y ( -.  0  e.  y  ->  ( `' F " y )  e.  dom  vol )  ->  ( -.  0  e.  x  ->  ( `' F " x )  e. 
dom  vol ) )
8259, 81syl 15 . . . . . . 7  |-  ( ph  ->  ( -.  0  e.  x  ->  ( `' F " x )  e. 
dom  vol ) )
8382imp 418 . . . . . 6  |-  ( (
ph  /\  -.  0  e.  x )  ->  ( `' F " x )  e.  dom  vol )
8483adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  ran  (,) )  /\  -.  0  e.  x
)  ->  ( `' F " x )  e. 
dom  vol )
8575, 84pm2.61dan 766 . . . 4  |-  ( (
ph  /\  x  e.  ran  (,) )  ->  ( `' F " x )  e.  dom  vol )
8685ralrimiva 2626 . . 3  |-  ( ph  ->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol )
87 ismbf 18985 . . . 4  |-  ( F : RR --> RR  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F "
x )  e.  dom  vol ) )
881, 87syl 15 . . 3  |-  ( ph  ->  ( F  e. MblFn  <->  A. x  e.  ran  (,) ( `' F " x )  e.  dom  vol )
)
8986, 88mpbird 223 . 2  |-  ( ph  ->  F  e. MblFn )
90 mblvol 18889 . . . . . . . 8  |-  ( ( `' F " y )  e.  dom  vol  ->  ( vol `  ( `' F " y ) )  =  ( vol
* `  ( `' F " y ) ) )
9157, 90syl 15 . . . . . . 7  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol `  ( `' F " y ) )  =  ( vol * `  ( `' F " y ) ) )
92 mblss 18890 . . . . . . . . 9  |-  ( ( `' F " y )  e.  dom  vol  ->  ( `' F " y ) 
C_  RR )
9357, 92syl 15 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( `' F " y ) 
C_  RR )
94 mblvol 18889 . . . . . . . . . . 11  |-  ( ( `' F " { x } )  e.  dom  vol 
->  ( vol `  ( `' F " { x } ) )  =  ( vol * `  ( `' F " { x } ) ) )
9553, 94syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol `  ( `' F " { x } ) )  =  ( vol
* `  ( `' F " { x }
) ) )
96 i1fd.4 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( ran  F  \  {
0 } ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
9741, 51, 96syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol `  ( `' F " { x } ) )  e.  RR )
9895, 97eqeltrrd 2358 . . . . . . . . 9  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( vol * `
 ( `' F " { x } ) )  e.  RR )
9940, 98fsumrecl 12207 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  sum_ x  e.  ( y  i^i  ran  F ) ( vol * `  ( `' F " { x } ) )  e.  RR )
10035fveq2d 5529 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol * `  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } ) )  =  ( vol
* `  ( `' F " y ) ) )
101 mblss 18890 . . . . . . . . . . . . 13  |-  ( ( `' F " { x } )  e.  dom  vol 
->  ( `' F " { x } ) 
C_  RR )
10253, 101syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( `' F " { x }
)  C_  RR )
103102, 98jca 518 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  0  e.  y )  /\  x  e.  (
y  i^i  ran  F ) )  ->  ( ( `' F " { x } )  C_  RR  /\  ( vol * `  ( `' F " { x } ) )  e.  RR ) )
104103ralrimiva 2626 . . . . . . . . . 10  |-  ( (
ph  /\  -.  0  e.  y )  ->  A. x  e.  ( y  i^i  ran  F ) ( ( `' F " { x } )  C_  RR  /\  ( vol * `  ( `' F " { x } ) )  e.  RR ) )
105 ovolfiniun 18860 . . . . . . . . . 10  |-  ( ( ( y  i^i  ran  F )  e.  Fin  /\  A. x  e.  ( y  i^i  ran  F )
( ( `' F " { x } ) 
C_  RR  /\  ( vol * `  ( `' F " { x } ) )  e.  RR ) )  -> 
( vol * `  U_ x  e.  ( y  i^i  ran  F )
( `' F " { x } ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol * `  ( `' F " { x } ) ) )
10640, 104, 105syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol * `  U_ x  e.  ( y  i^i  ran  F ) ( `' F " { x } ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol * `  ( `' F " { x } ) ) )
107100, 106eqbrtrrd 4045 . . . . . . . 8  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol * `  ( `' F " y ) )  <_  sum_ x  e.  ( y  i^i  ran  F ) ( vol * `  ( `' F " { x } ) ) )
108 ovollecl 18842 . . . . . . . 8  |-  ( ( ( `' F "
y )  C_  RR  /\ 
sum_ x  e.  (
y  i^i  ran  F ) ( vol * `  ( `' F " { x } ) )  e.  RR  /\  ( vol
* `  ( `' F " y ) )  <_  sum_ x  e.  ( y  i^i  ran  F
) ( vol * `  ( `' F " { x } ) ) )  ->  ( vol * `  ( `' F " y ) )  e.  RR )
10993, 99, 107, 108syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol * `  ( `' F " y ) )  e.  RR )
11091, 109eqeltrd 2357 . . . . . 6  |-  ( (
ph  /\  -.  0  e.  y )  ->  ( vol `  ( `' F " y ) )  e.  RR )
111110ex 423 . . . . 5  |-  ( ph  ->  ( -.  0  e.  y  ->  ( vol `  ( `' F "
y ) )  e.  RR ) )
112111alrimiv 1617 . . . 4  |-  ( ph  ->  A. y ( -.  0  e.  y  -> 
( vol `  ( `' F " y ) )  e.  RR ) )
113 c0ex 8832 . . . . . 6  |-  0  e.  _V
114113snid 3667 . . . . 5  |-  0  e.  { 0 }
115 eldifn 3299 . . . . 5  |-  ( 0  e.  ( RR  \  { 0 } )  ->  -.  0  e.  { 0 } )
116114, 115mt2 170 . . . 4  |-  -.  0  e.  ( RR  \  {
0 } )
117 difexg 4162 . . . . . 6  |-  ( RR  e.  _V  ->  ( RR  \  { 0 } )  e.  _V )
11863, 117ax-mp 8 . . . . 5  |-  ( RR 
\  { 0 } )  e.  _V
119 eleq2 2344 . . . . . . 7  |-  ( y  =  ( RR  \  { 0 } )  ->  ( 0  e.  y  <->  0  e.  ( RR  \  { 0 } ) ) )
120119notbid 285 . . . . . 6  |-  ( y  =  ( RR  \  { 0 } )  ->  ( -.  0  e.  y  <->  -.  0  e.  ( RR  \  { 0 } ) ) )
121 imaeq2 5008 . . . . . . . 8  |-  ( y  =  ( RR  \  { 0 } )  ->  ( `' F " y )  =  ( `' F " ( RR 
\  { 0 } ) ) )
122121fveq2d 5529 . . . . . . 7  |-  ( y  =  ( RR  \  { 0 } )  ->  ( vol `  ( `' F " y ) )  =  ( vol `  ( `' F "
( RR  \  {
0 } ) ) ) )
123122eleq1d 2349 . . . . . 6  |-  ( y  =  ( RR  \  { 0 } )  ->  ( ( vol `  ( `' F "
y ) )  e.  RR  <->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) )
124120, 123imbi12d 311 . . . . 5  |-  ( y  =  ( RR  \  { 0 } )  ->  ( ( -.  0  e.  y  -> 
( vol `  ( `' F " y ) )  e.  RR )  <-> 
( -.  0  e.  ( RR  \  {
0 } )  -> 
( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR ) ) )
125118, 124spcv 2874 . . . 4  |-  ( A. y ( -.  0  e.  y  ->  ( vol `  ( `' F "
y ) )  e.  RR )  ->  ( -.  0  e.  ( RR  \  { 0 } )  ->  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) )
126112, 116, 125ee10 1366 . . 3  |-  ( ph  ->  ( vol `  ( `' F " ( RR 
\  { 0 } ) ) )  e.  RR )
1271, 36, 1263jca 1132 . 2  |-  ( ph  ->  ( F : RR --> RR  /\  ran  F  e. 
Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) )
128 isi1f 19029 . 2  |-  ( F  e.  dom  S.1  <->  ( F  e. MblFn  /\  ( F : RR
--> RR  /\  ran  F  e.  Fin  /\  ( vol `  ( `' F "
( RR  \  {
0 } ) ) )  e.  RR ) ) )
12989, 127, 128sylanbrc 645 1  |-  ( ph  ->  F  e.  dom  S.1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U_ciun 3905   class class class wbr 4023    X. cxp 4687   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692   Fun wfun 5249   -->wf 5251   ` cfv 5255   Fincfn 6863   RRcr 8736   0cc0 8737   RR*cxr 8866    <_ cle 8868   (,)cioo 10656   sum_csu 12158   vol
*covol 18822   volcvol 18823  MblFncmbf 18969   S.1citg1 18970
This theorem is referenced by:  i1f0  19042  i1f1  19045  i1fadd  19050  i1fmul  19051  i1fmulc  19058  i1fres  19060  mbfi1fseqlem4  19073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xadd 10453  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-xmet 16373  df-met 16374  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976
  Copyright terms: Public domain W3C validator