MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmul Unicode version

Theorem i1fmul 19067
Description: The pointwise product of two simple functions is a simple function. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
i1fadd.1  |-  ( ph  ->  F  e.  dom  S.1 )
i1fadd.2  |-  ( ph  ->  G  e.  dom  S.1 )
Assertion
Ref Expression
i1fmul  |-  ( ph  ->  ( F  o F  x.  G )  e. 
dom  S.1 )

Proof of Theorem i1fmul
Dummy variables  y 
z  w  v  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 8838 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
21adantl 452 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
3 i1fadd.1 . . . 4  |-  ( ph  ->  F  e.  dom  S.1 )
4 i1ff 19047 . . . 4  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
53, 4syl 15 . . 3  |-  ( ph  ->  F : RR --> RR )
6 i1fadd.2 . . . 4  |-  ( ph  ->  G  e.  dom  S.1 )
7 i1ff 19047 . . . 4  |-  ( G  e.  dom  S.1  ->  G : RR --> RR )
86, 7syl 15 . . 3  |-  ( ph  ->  G : RR --> RR )
9 reex 8844 . . . 4  |-  RR  e.  _V
109a1i 10 . . 3  |-  ( ph  ->  RR  e.  _V )
11 inidm 3391 . . 3  |-  ( RR 
i^i  RR )  =  RR
122, 5, 8, 10, 10, 11off 6109 . 2  |-  ( ph  ->  ( F  o F  x.  G ) : RR --> RR )
13 i1frn 19048 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
143, 13syl 15 . . . . 5  |-  ( ph  ->  ran  F  e.  Fin )
15 i1frn 19048 . . . . . 6  |-  ( G  e.  dom  S.1  ->  ran 
G  e.  Fin )
166, 15syl 15 . . . . 5  |-  ( ph  ->  ran  G  e.  Fin )
17 xpfi 7144 . . . . 5  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  e.  Fin )  ->  ( ran  F  X.  ran  G )  e. 
Fin )
1814, 16, 17syl2anc 642 . . . 4  |-  ( ph  ->  ( ran  F  X.  ran  G )  e.  Fin )
19 eqid 2296 . . . . . 6  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) )  =  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )
20 ovex 5899 . . . . . 6  |-  ( u  x.  v )  e. 
_V
2119, 20fnmpt2i 6209 . . . . 5  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) )  Fn  ( ran  F  X.  ran  G
)
22 dffn4 5473 . . . . 5  |-  ( ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  Fn  ( ran  F  X.  ran  G
)  <->  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) : ( ran 
F  X.  ran  G
) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )
2321, 22mpbi 199 . . . 4  |-  ( u  e.  ran  F , 
v  e.  ran  G  |->  ( u  x.  v
) ) : ( ran  F  X.  ran  G ) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )
24 fofi 7158 . . . 4  |-  ( ( ( ran  F  X.  ran  G )  e.  Fin  /\  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) ) : ( ran  F  X.  ran  G ) -onto-> ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )  ->  ran  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  e.  Fin )
2518, 23, 24sylancl 643 . . 3  |-  ( ph  ->  ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )  e.  Fin )
26 eqid 2296 . . . . . . . . 9  |-  ( x  x.  y )  =  ( x  x.  y
)
27 rspceov 5909 . . . . . . . . 9  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G  /\  ( x  x.  y )  =  ( x  x.  y ) )  ->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) )
2826, 27mp3an3 1266 . . . . . . . 8  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G )  ->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) )
29 ovex 5899 . . . . . . . . 9  |-  ( x  x.  y )  e. 
_V
30 eqeq1 2302 . . . . . . . . . 10  |-  ( w  =  ( x  x.  y )  ->  (
w  =  ( u  x.  v )  <->  ( x  x.  y )  =  ( u  x.  v ) ) )
31302rexbidv 2599 . . . . . . . . 9  |-  ( w  =  ( x  x.  y )  ->  ( E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v )  <->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y )  =  ( u  x.  v
) ) )
3229, 31elab 2927 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) }  <->  E. u  e.  ran  F E. v  e.  ran  G ( x  x.  y
)  =  ( u  x.  v ) )
3328, 32sylibr 203 . . . . . . 7  |-  ( ( x  e.  ran  F  /\  y  e.  ran  G )  ->  ( x  x.  y )  e.  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
3433adantl 452 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ran  F  /\  y  e.  ran  G ) )  ->  ( x  x.  y )  e.  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
35 ffn 5405 . . . . . . . 8  |-  ( F : RR --> RR  ->  F  Fn  RR )
365, 35syl 15 . . . . . . 7  |-  ( ph  ->  F  Fn  RR )
37 dffn3 5412 . . . . . . 7  |-  ( F  Fn  RR  <->  F : RR
--> ran  F )
3836, 37sylib 188 . . . . . 6  |-  ( ph  ->  F : RR --> ran  F
)
39 ffn 5405 . . . . . . . 8  |-  ( G : RR --> RR  ->  G  Fn  RR )
408, 39syl 15 . . . . . . 7  |-  ( ph  ->  G  Fn  RR )
41 dffn3 5412 . . . . . . 7  |-  ( G  Fn  RR  <->  G : RR
--> ran  G )
4240, 41sylib 188 . . . . . 6  |-  ( ph  ->  G : RR --> ran  G
)
4334, 38, 42, 10, 10, 11off 6109 . . . . 5  |-  ( ph  ->  ( F  o F  x.  G ) : RR --> { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) } )
44 frn 5411 . . . . 5  |-  ( ( F  o F  x.  G ) : RR --> { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) }  ->  ran  ( F  o F  x.  G )  C_  { w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) } )
4543, 44syl 15 . . . 4  |-  ( ph  ->  ran  ( F  o F  x.  G )  C_ 
{ w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v ) } )
4619rnmpt2 5970 . . . 4  |-  ran  (
u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) )  =  {
w  |  E. u  e.  ran  F E. v  e.  ran  G  w  =  ( u  x.  v
) }
4745, 46syl6sseqr 3238 . . 3  |-  ( ph  ->  ran  ( F  o F  x.  G )  C_ 
ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) ) )
48 ssfi 7099 . . 3  |-  ( ( ran  ( u  e. 
ran  F ,  v  e.  ran  G  |->  ( u  x.  v ) )  e.  Fin  /\  ran  ( F  o F  x.  G )  C_  ran  ( u  e.  ran  F ,  v  e.  ran  G 
|->  ( u  x.  v
) ) )  ->  ran  ( F  o F  x.  G )  e. 
Fin )
4925, 47, 48syl2anc 642 . 2  |-  ( ph  ->  ran  ( F  o F  x.  G )  e.  Fin )
50 frn 5411 . . . . . . . 8  |-  ( ( F  o F  x.  G ) : RR --> RR  ->  ran  ( F  o F  x.  G
)  C_  RR )
5112, 50syl 15 . . . . . . 7  |-  ( ph  ->  ran  ( F  o F  x.  G )  C_  RR )
52 ax-resscn 8810 . . . . . . 7  |-  RR  C_  CC
5351, 52syl6ss 3204 . . . . . 6  |-  ( ph  ->  ran  ( F  o F  x.  G )  C_  CC )
54 ssdif 3324 . . . . . 6  |-  ( ran  ( F  o F  x.  G )  C_  CC  ->  ( ran  ( F  o F  x.  G
)  \  { 0 } )  C_  ( CC  \  { 0 } ) )
5553, 54syl 15 . . . . 5  |-  ( ph  ->  ( ran  ( F  o F  x.  G
)  \  { 0 } )  C_  ( CC  \  { 0 } ) )
5655sselda 3193 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
573, 6i1fmullem 19065 . . . 4  |-  ( (
ph  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( `' ( F  o F  x.  G
) " { y } )  =  U_ z  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )
5856, 57syldan 456 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( `' ( F  o F  x.  G ) " {
y } )  = 
U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )
59 difss 3316 . . . . . 6  |-  ( ran 
G  \  { 0 } )  C_  ran  G
60 ssfi 7099 . . . . . 6  |-  ( ( ran  G  e.  Fin  /\  ( ran  G  \  { 0 } ) 
C_  ran  G )  ->  ( ran  G  \  { 0 } )  e.  Fin )
6116, 59, 60sylancl 643 . . . . 5  |-  ( ph  ->  ( ran  G  \  { 0 } )  e.  Fin )
62 i1fima 19049 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( `' F " { ( y  /  z ) } )  e.  dom  vol )
633, 62syl 15 . . . . . . 7  |-  ( ph  ->  ( `' F " { ( y  / 
z ) } )  e.  dom  vol )
64 i1fima 19049 . . . . . . . 8  |-  ( G  e.  dom  S.1  ->  ( `' G " { z } )  e.  dom  vol )
656, 64syl 15 . . . . . . 7  |-  ( ph  ->  ( `' G " { z } )  e.  dom  vol )
66 inmbl 18915 . . . . . . 7  |-  ( ( ( `' F " { ( y  / 
z ) } )  e.  dom  vol  /\  ( `' G " { z } )  e.  dom  vol )  ->  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )
6763, 65, 66syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
6867ralrimivw 2640 . . . . 5  |-  ( ph  ->  A. z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
69 finiunmbl 18917 . . . . 5  |-  ( ( ( ran  G  \  { 0 } )  e.  Fin  /\  A. z  e.  ( ran  G 
\  { 0 } ) ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  e. 
dom  vol )  ->  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
7061, 68, 69syl2anc 642 . . . 4  |-  ( ph  ->  U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
7170adantr 451 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol )
7258, 71eqeltrd 2370 . 2  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( `' ( F  o F  x.  G ) " {
y } )  e. 
dom  vol )
73 mblvol 18905 . . . 4  |-  ( ( `' ( F  o F  x.  G ) " { y } )  e.  dom  vol  ->  ( vol `  ( `' ( F  o F  x.  G ) " { y } ) )  =  ( vol
* `  ( `' ( F  o F  x.  G ) " {
y } ) ) )
7472, 73syl 15 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol `  ( `' ( F  o F  x.  G
) " { y } ) )  =  ( vol * `  ( `' ( F  o F  x.  G ) " { y } ) ) )
75 mblss 18906 . . . . 5  |-  ( ( `' ( F  o F  x.  G ) " { y } )  e.  dom  vol  ->  ( `' ( F  o F  x.  G ) " { y } ) 
C_  RR )
7672, 75syl 15 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( `' ( F  o F  x.  G ) " {
y } )  C_  RR )
7761adantr 451 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( ran  G 
\  { 0 } )  e.  Fin )
78 inss2 3403 . . . . . . 7  |-  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )
7978a1i 10 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } ) )
8065ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( `' G " { z } )  e.  dom  vol )
81 mblss 18906 . . . . . . 7  |-  ( ( `' G " { z } )  e.  dom  vol 
->  ( `' G " { z } ) 
C_  RR )
8280, 81syl 15 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( `' G " { z } )  C_  RR )
83 mblvol 18905 . . . . . . . 8  |-  ( ( `' G " { z } )  e.  dom  vol 
->  ( vol `  ( `' G " { z } ) )  =  ( vol * `  ( `' G " { z } ) ) )
8480, 83syl 15 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol `  ( `' G " { z } ) )  =  ( vol
* `  ( `' G " { z } ) ) )
856adantr 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  G  e.  dom  S.1 )
86 i1fima2sn 19051 . . . . . . . 8  |-  ( ( G  e.  dom  S.1  /\  z  e.  ( ran 
G  \  { 0 } ) )  -> 
( vol `  ( `' G " { z } ) )  e.  RR )
8785, 86sylan 457 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol `  ( `' G " { z } ) )  e.  RR )
8884, 87eqeltrrd 2371 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol * `  ( `' G " { z } ) )  e.  RR )
89 ovolsscl 18861 . . . . . 6  |-  ( ( ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  ( `' G " { z } )  /\  ( `' G " { z } )  C_  RR  /\  ( vol * `  ( `' G " { z } ) )  e.  RR )  ->  ( vol * `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
9079, 82, 88, 89syl3anc 1182 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  ( vol * `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
9177, 90fsumrecl 12223 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR )
9258fveq2d 5545 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol * `
 ( `' ( F  o F  x.  G ) " {
y } ) )  =  ( vol * `  U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
93 mblss 18906 . . . . . . . . . 10  |-  ( ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  e.  dom  vol  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9467, 93syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9594ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR )
9695, 90jca 518 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ran  ( F  o F  x.  G
)  \  { 0 } ) )  /\  z  e.  ( ran  G 
\  { 0 } ) )  ->  (
( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol * `  ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )
9796ralrimiva 2639 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  A. z  e.  ( ran  G  \  { 0 } ) ( ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )
98 ovolfiniun 18876 . . . . . 6  |-  ( ( ( ran  G  \  { 0 } )  e.  Fin  /\  A. z  e.  ( ran  G 
\  { 0 } ) ( ( ( `' F " { ( y  /  z ) } )  i^i  ( `' G " { z } ) )  C_  RR  /\  ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR ) )  ->  ( vol * `  U_ z  e.  ( ran  G  \  { 0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
9977, 97, 98syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol * `
 U_ z  e.  ( ran  G  \  {
0 } ) ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
10092, 99eqbrtrd 4059 . . . 4  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol * `
 ( `' ( F  o F  x.  G ) " {
y } ) )  <_  sum_ z  e.  ( ran  G  \  {
0 } ) ( vol * `  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )
101 ovollecl 18858 . . . 4  |-  ( ( ( `' ( F  o F  x.  G
) " { y } )  C_  RR  /\ 
sum_ z  e.  ( ran  G  \  {
0 } ) ( vol * `  (
( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) )  e.  RR  /\  ( vol * `  ( `' ( F  o F  x.  G ) " { y } ) )  <_  sum_ z  e.  ( ran  G  \  { 0 } ) ( vol * `  ( ( `' F " { ( y  / 
z ) } )  i^i  ( `' G " { z } ) ) ) )  -> 
( vol * `  ( `' ( F  o F  x.  G ) " { y } ) )  e.  RR )
10276, 91, 100, 101syl3anc 1182 . . 3  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol * `
 ( `' ( F  o F  x.  G ) " {
y } ) )  e.  RR )
10374, 102eqeltrd 2370 . 2  |-  ( (
ph  /\  y  e.  ( ran  ( F  o F  x.  G )  \  { 0 } ) )  ->  ( vol `  ( `' ( F  o F  x.  G
) " { y } ) )  e.  RR )
10412, 49, 72, 103i1fd 19052 1  |-  ( ph  ->  ( F  o F  x.  G )  e. 
dom  S.1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   {csn 3653   U_ciun 3921   class class class wbr 4039    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876    o Fcof 6092   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    <_ cle 8884    / cdiv 9439   sum_csu 12174   vol *covol 18838   volcvol 18839   S.1citg1 18986
This theorem is referenced by:  mbfmullem2  19095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xadd 10469  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-xmet 16389  df-met 16390  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992
  Copyright terms: Public domain W3C validator