MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Unicode version

Theorem i1fres 19060
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside  A.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
Assertion
Ref Expression
i1fres  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem i1fres
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 19031 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21adantr 451 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F : RR --> RR )
3 ffn 5389 . . . . . . 7  |-  ( F : RR --> RR  ->  F  Fn  RR )
42, 3syl 15 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F  Fn  RR )
5 fnfvelrn 5662 . . . . . 6  |-  ( ( F  Fn  RR  /\  x  e.  RR )  ->  ( F `  x
)  e.  ran  F
)
64, 5sylan 457 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  ( F `  x )  e.  ran  F )
7 i1f0rn 19037 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0  e.  ran  F )
87ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  0  e.  ran  F )
9 ifcl 3601 . . . . 5  |-  ( ( ( F `  x
)  e.  ran  F  /\  0  e.  ran  F )  ->  if (
x  e.  A , 
( F `  x
) ,  0 )  e.  ran  F )
106, 8, 9syl2anc 642 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  e.  ran  F
)
11 i1fres.1 . . . 4  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
1210, 11fmptd 5684 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> ran  F )
13 frn 5395 . . . 4  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
142, 13syl 15 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  C_  RR )
15 fss 5397 . . 3  |-  ( ( G : RR --> ran  F  /\  ran  F  C_  RR )  ->  G : RR --> RR )
1612, 14, 15syl2anc 642 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> RR )
17 i1frn 19032 . . . 4  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
1817adantr 451 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  e.  Fin )
19 frn 5395 . . . 4  |-  ( G : RR --> ran  F  ->  ran  G  C_  ran  F )
2012, 19syl 15 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  C_  ran  F )
21 ssfi 7083 . . 3  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  C_  ran  F
)  ->  ran  G  e. 
Fin )
2218, 20, 21syl2anc 642 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  e.  Fin )
23 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
24 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
25 eqidd 2284 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  0  =  0 )
2623, 24, 25ifbieq12d 3587 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  if ( z  e.  A , 
( F `  z
) ,  0 ) )
27 fvex 5539 . . . . . . . . . . . . . 14  |-  ( F `
 z )  e. 
_V
28 c0ex 8832 . . . . . . . . . . . . . 14  |-  0  e.  _V
2927, 28ifex 3623 . . . . . . . . . . . . 13  |-  if ( z  e.  A , 
( F `  z
) ,  0 )  e.  _V
3026, 11, 29fvmpt 5602 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3130adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3231eqeq1d 2291 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  if (
z  e.  A , 
( F `  z
) ,  0 )  =  y ) )
33 eldifsni 3750 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ran  G  \  { 0 } )  ->  y  =/=  0
)
3433ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  y  =/=  0 )
3534necomd 2529 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  0  =/=  y )
36 iffalse 3572 . . . . . . . . . . . . . 14  |-  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  0 )
3736neeq1d 2459 . . . . . . . . . . . . 13  |-  ( -.  z  e.  A  -> 
( if ( z  e.  A ,  ( F `  z ) ,  0 )  =/=  y  <->  0  =/=  y
) )
3835, 37syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `
 z ) ,  0 )  =/=  y
) )
3938necon4bd 2508 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  -> 
z  e.  A ) )
4039pm4.71rd 616 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
4132, 40bitrd 244 . . . . . . . . 9  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
42 iftrue 3571 . . . . . . . . . . 11  |-  ( z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  ( F `
 z ) )
4342eqeq1d 2291 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( F `  z )  =  y ) )
4443pm5.32i 618 . . . . . . . . 9  |-  ( ( z  e.  A  /\  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y )  <-> 
( z  e.  A  /\  ( F `  z
)  =  y ) )
4541, 44syl6bb 252 . . . . . . . 8  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  ( F `  z )  =  y ) ) )
4645pm5.32da 622 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z )  =  y ) ) ) )
47 an12 772 . . . . . . 7  |-  ( ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z
)  =  y ) )  <->  ( z  e.  A  /\  ( z  e.  RR  /\  ( F `  z )  =  y ) ) )
4846, 47syl6bb 252 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
49 ffn 5389 . . . . . . . . 9  |-  ( G : RR --> ran  F  ->  G  Fn  RR )
5012, 49syl 15 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  Fn  RR )
5150adantr 451 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  G  Fn  RR )
52 fniniseg 5646 . . . . . . 7  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
5351, 52syl 15 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
544adantr 451 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  F  Fn  RR )
55 fniniseg 5646 . . . . . . . 8  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { y } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  y ) ) )
5654, 55syl 15 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' F " { y } )  <-> 
( z  e.  RR  /\  ( F `  z
)  =  y ) ) )
5756anbi2d 684 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  A  /\  z  e.  ( `' F " { y } ) )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
5848, 53, 573bitr4d 276 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  A  /\  z  e.  ( `' F " { y } ) ) ) )
59 elin 3358 . . . . 5  |-  ( z  e.  ( A  i^i  ( `' F " { y } ) )  <->  ( z  e.  A  /\  z  e.  ( `' F " { y } ) ) )
6058, 59syl6bbr 254 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
z  e.  ( A  i^i  ( `' F " { y } ) ) ) )
6160eqrdv 2281 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  =  ( A  i^i  ( `' F " { y } ) ) )
62 simplr 731 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  A  e.  dom  vol )
63 i1fima 19033 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( `' F " { y } )  e.  dom  vol )
6463ad2antrr 706 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
65 inmbl 18899 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( `' F " { y } )  e.  dom  vol )  ->  ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol )
6662, 64, 65syl2anc 642 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  e.  dom  vol )
6761, 66eqeltrd 2357 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  e.  dom  vol )
6861fveq2d 5529 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol `  ( A  i^i  ( `' F " { y } ) ) ) )
69 mblvol 18889 . . . . 5  |-  ( ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7066, 69syl 15 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7168, 70eqtrd 2315 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol
* `  ( A  i^i  ( `' F " { y } ) ) ) )
72 inss2 3390 . . . . 5  |-  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )
7372a1i 10 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } ) )
74 mblss 18890 . . . . 5  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( `' F " { y } ) 
C_  RR )
7564, 74syl 15 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  C_  RR )
76 mblvol 18889 . . . . . 6  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( vol `  ( `' F " { y } ) )  =  ( vol * `  ( `' F " { y } ) ) )
7764, 76syl 15 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol
* `  ( `' F " { y } ) ) )
78 i1fima2sn 19035 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  y  e.  ( ran 
G  \  { 0 } ) )  -> 
( vol `  ( `' F " { y } ) )  e.  RR )
7978adantlr 695 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  e.  RR )
8077, 79eqeltrrd 2358 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( `' F " { y } ) )  e.  RR )
81 ovolsscl 18845 . . . 4  |-  ( ( ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )  /\  ( `' F " { y } )  C_  RR  /\  ( vol * `  ( `' F " { y } ) )  e.  RR )  ->  ( vol * `  ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8273, 75, 80, 81syl3anc 1182 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8371, 82eqeltrd 2357 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  e.  RR )
8416, 22, 67, 83i1fd 19036 1  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    i^i cin 3151    C_ wss 3152   ifcif 3565   {csn 3640    e. cmpt 4077   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255   Fincfn 6863   RRcr 8736   0cc0 8737   vol *covol 18822   volcvol 18823   S.1citg1 18970
This theorem is referenced by:  i1fpos  19061  itg1climres  19069  itg2uba  19098  itg2splitlem  19103  itg2monolem1  19105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976
  Copyright terms: Public domain W3C validator