MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibd Structured version   Unicode version

Theorem ibd 235
Description: Deduction that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 26-Jun-2004.)
Hypothesis
Ref Expression
ibd.1  |-  ( ph  ->  ( ps  ->  ( ps 
<->  ch ) ) )
Assertion
Ref Expression
ibd  |-  ( ph  ->  ( ps  ->  ch ) )

Proof of Theorem ibd
StepHypRef Expression
1 ibd.1 . 2  |-  ( ph  ->  ( ps  ->  ( ps 
<->  ch ) ) )
2 bi1 179 . 2  |-  ( ( ps  <->  ch )  ->  ( ps  ->  ch ) )
31, 2syli 35 1  |-  ( ph  ->  ( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177
This theorem is referenced by:  sssn  3957  unblem2  7360  atcv0eq  23882  atcv1  23883  atomli  23885  atcvatlem  23888  ibdr  26699
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178
  Copyright terms: Public domain W3C validator