Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibdr Unicode version

Theorem ibdr 26716
Description: Reverse of ibd. (Contributed by Rodolfo Medina, 30-Sep-2010.)
Hypothesis
Ref Expression
ibdr.1  |-  ( ph  ->  ( ch  ->  ( ps 
<->  ch ) ) )
Assertion
Ref Expression
ibdr  |-  ( ph  ->  ( ch  ->  ps ) )

Proof of Theorem ibdr
StepHypRef Expression
1 ibdr.1 . . 3  |-  ( ph  ->  ( ch  ->  ( ps 
<->  ch ) ) )
21bicomdd 26705 . 2  |-  ( ph  ->  ( ch  ->  ( ch 
<->  ps ) ) )
32ibd 234 1  |-  ( ph  ->  ( ch  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator