MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabslem Structured version   Unicode version

Theorem iblabslem 19722
Description: Lemma for iblabs 19723. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
iblabs.3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
iblabs.4  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L ^1 )
iblabs.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
Assertion
Ref Expression
iblabslem  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)    V( x)

Proof of Theorem iblabslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.3 . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
2 iblabs.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L ^1 )
3 iblabs.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
43iblrelem 19685 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  L ^1  <->  ( (
x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) ) )
52, 4mpbid 203 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) )
65simp1d 970 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
76, 3mbfdm2 19533 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
8 mblss 19432 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
97, 8syl 16 . . . 4  |-  ( ph  ->  A  C_  RR )
10 rembl 19440 . . . . 5  |-  RR  e.  dom  vol
1110a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
12 iftrue 3747 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
1312adantl 454 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
143recnd 9119 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  CC )
1514abscld 12243 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
1613, 15eqeltrd 2512 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  e.  RR )
17 eldifn 3472 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
1817adantl 454 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
19 iffalse 3748 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  0 )
2018, 19syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  ( F `  B )
) ,  0 )  =  0 )
21 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  =  ( x  e.  A  |->  ( F `  B ) ) )
22 absf 12146 . . . . . . . . 9  |-  abs : CC
--> RR
2322a1i 11 . . . . . . . 8  |-  ( ph  ->  abs : CC --> RR )
2423feqmptd 5782 . . . . . . 7  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
25 fveq2 5731 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  ( abs `  y )  =  ( abs `  ( F `  B )
) )
2614, 21, 24, 25fmptco 5904 . . . . . 6  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  =  ( x  e.  A  |->  ( abs `  ( F `
 B ) ) ) )
2712mpteq2ia 4294 . . . . . 6  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )
2826, 27syl6reqr 2489 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  =  ( abs  o.  ( x  e.  A  |->  ( F `
 B ) ) ) )
29 eqid 2438 . . . . . . 7  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
3014, 29fmptd 5896 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> CC )
31 ax-resscn 9052 . . . . . . . . 9  |-  RR  C_  CC
32 ssid 3369 . . . . . . . . 9  |-  CC  C_  CC
33 cncfss 18934 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
3431, 32, 33mp2an 655 . . . . . . . 8  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
35 abscncf 18936 . . . . . . . 8  |-  abs  e.  ( CC -cn-> RR )
3634, 35sselii 3347 . . . . . . 7  |-  abs  e.  ( CC -cn-> CC )
3736a1i 11 . . . . . 6  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
38 cncombf 19553 . . . . . 6  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
396, 30, 37, 38syl3anc 1185 . . . . 5  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
4028, 39eqeltrd 2512 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  e. MblFn )
419, 11, 16, 20, 40mbfss 19541 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )  e. MblFn )
421, 41syl5eqel 2522 . 2  |-  ( ph  ->  G  e. MblFn )
43 reex 9086 . . . . . . . . 9  |-  RR  e.  _V
4443a1i 11 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
45 ifan 3780 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )
46 0re 9096 . . . . . . . . . . . . 13  |-  0  e.  RR
47 ifcl 3777 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 )  e.  RR )
483, 46, 47sylancl 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR )
49 max1 10778 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( F `  B )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
5046, 3, 49sylancr 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )
51 elrege0 11012 . . . . . . . . . . . 12  |-  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ) )
5248, 50, 51sylanbrc 647 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
53 0le0 10086 . . . . . . . . . . . . 13  |-  0  <_  0
54 elrege0 11012 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
5546, 53, 54mpbir2an 888 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,)  +oo )
5655a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
5752, 56ifclda 3768 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,)  +oo )
)
5845, 57syl5eqel 2522 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
5958adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
60 ifan 3780 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )
613renegcld 9469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  B )  e.  RR )
62 ifcl 3777 . . . . . . . . . . . . 13  |-  ( (
-u ( F `  B )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
6361, 46, 62sylancl 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
64 max1 10778 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u ( F `  B
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
6546, 61, 64sylancr 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )
66 elrege0 11012 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ) )
6763, 65, 66sylanbrc 647 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
6867, 56ifclda 3768 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) 
+oo ) )
6960, 68syl5eqel 2522 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
7069adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
71 eqidd 2439 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )
72 eqidd 2439 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )
7344, 59, 70, 71, 72offval2 6325 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) ) )
7445, 60oveq12i 6096 . . . . . . . . 9  |-  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 ) )
75 max0add 12120 . . . . . . . . . . . . 13  |-  ( ( F `  B )  e.  RR  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
763, 75syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
77 iftrue 3747 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
7877adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
79 iftrue 3747 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
8079adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
8178, 80oveq12d 6102 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ) )
8276, 81, 133eqtr4d 2480 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8382ex 425 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
84 00id 9246 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
85 iffalse 3748 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  0 )
86 iffalse 3748 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  0 )
8785, 86oveq12d 6102 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) )
8884, 87, 193eqtr4a 2496 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8983, 88pm2.61d1 154 . . . . . . . . 9  |-  ( ph  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
9074, 89syl5eq 2482 . . . . . . . 8  |-  ( ph  ->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 )  +  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
9190mpteq2dv 4299 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) ) )
9273, 91eqtrd 2470 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
9392, 1syl6reqr 2489 . . . . 5  |-  ( ph  ->  G  =  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )
9493fveq2d 5735 . . . 4  |-  ( ph  ->  ( S.2 `  G
)  =  ( S.2 `  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
9558adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
9645, 85syl5eq 2482 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  =  0 )
9718, 96syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  0 )
98 ibar 492 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  ( F `  B )  <->  ( x  e.  A  /\  0  <_  ( F `  B
) ) ) )
9998ifbid 3759 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )
10099mpteq2ia 4294 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )
1013, 6mbfpos 19546 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )  e. MblFn
)
102100, 101syl5eqelr 2523 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
1039, 11, 95, 97, 102mbfss 19541 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
104 eqid 2438 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )
10559, 104fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
1065simp2d 971 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR )
10769adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
10860, 86syl5eq 2482 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  =  0 )
10918, 108syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  0 )
110 ibar 492 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  -u ( F `
 B )  <->  ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) ) )
111110ifbid 3759 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )
112111mpteq2ia 4294 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )
1133, 6mbfneg 19545 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( F `  B ) )  e. MblFn
)
11461, 113mbfpos 19546 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
115112, 114syl5eqelr 2523 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  e. MblFn )
1169, 11, 107, 109, 115mbfss 19541 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
117 eqid 2438 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )
11870, 117fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
1195simp3d 972 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR )
120103, 105, 106, 116, 118, 119itg2add 19654 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
12194, 120eqtrd 2470 . . 3  |-  ( ph  ->  ( S.2 `  G
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
122106, 119readdcld 9120 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  e.  RR )
123121, 122eqeltrd 2512 . 2  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
12442, 123jca 520 1  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ifcif 3741   class class class wbr 4215    e. cmpt 4269   dom cdm 4881    o. ccom 4885   -->wf 5453   ` cfv 5457  (class class class)co 6084    o Fcof 6306   CCcc 8993   RRcr 8994   0cc0 8995    + caddc 8998    +oocpnf 9122    <_ cle 9126   -ucneg 9297   [,)cico 10923   abscabs 12044   -cn->ccncf 18911   volcvol 19365  MblFncmbf 19511   S.2citg2 19513   L ^1cibl 19514
This theorem is referenced by:  iblabs  19723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cc 8320  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-acn 7834  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-rlim 12288  df-sum 12485  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cn 17296  df-cnp 17297  df-cmp 17455  df-tx 17599  df-hmeo 17792  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-ovol 19366  df-vol 19367  df-mbf 19516  df-itg1 19517  df-itg2 19518  df-ibl 19519  df-0p 19565
  Copyright terms: Public domain W3C validator