MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladdlem Unicode version

Theorem ibladdlem 19664
Description: Lemma for ibladd 19665. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
ibladd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
ibladd.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
ibladd.3  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
ibladd.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
ibladd.5  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
ibladd.6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
ibladd.7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
Assertion
Ref Expression
ibladdlem  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    D( x)

Proof of Theorem ibladdlem
StepHypRef Expression
1 ifan 3738 . . . 4  |-  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )
2 ibladd.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
3 ibladd.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 ibladd.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
53, 4readdcld 9071 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
62, 5eqeltrd 2478 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  RR )
7 0re 9047 . . . . . . . . 9  |-  0  e.  RR
8 ifcl 3735 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  D ,  D , 
0 )  e.  RR )
96, 7, 8sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR )
109rexrd 9090 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR* )
11 max1 10729 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  D  e.  RR )  ->  0  <_  if (
0  <_  D ,  D ,  0 ) )
127, 6, 11sylancr 645 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  D ,  D , 
0 ) )
13 elxrge0 10964 . . . . . . 7  |-  ( if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] 
+oo )  <->  ( if ( 0  <_  D ,  D ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_  D ,  D , 
0 ) ) )
1410, 12, 13sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] 
+oo ) )
15 0xr 9087 . . . . . . . 8  |-  0  e.  RR*
16 0le0 10037 . . . . . . . 8  |-  0  <_  0
17 elxrge0 10964 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
1815, 16, 17mpbir2an 887 . . . . . . 7  |-  0  e.  ( 0 [,]  +oo )
1918a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
2014, 19ifclda 3726 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
2120adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
221, 21syl5eqel 2488 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  e.  ( 0 [,]  +oo ) )
23 eqid 2404 . . 3  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )
2422, 23fmptd 5852 . 2  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
25 reex 9037 . . . . . . . 8  |-  RR  e.  _V
2625a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
27 ifan 3738 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
28 ifcl 3735 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
293, 7, 28sylancl 644 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
307a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  RR )
3129, 30ifclda 3726 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  RR )
3227, 31syl5eqel 2488 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
3332adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
34 ifan 3738 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )
35 ifcl 3735 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
364, 7, 35sylancl 644 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
3736, 30ifclda 3726 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  RR )
3834, 37syl5eqel 2488 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
3938adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
40 eqidd 2405 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )
41 eqidd 2405 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4226, 33, 39, 40, 41offval2 6281 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
43 iftrue 3705 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
44 ibar 491 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  B  <->  ( x  e.  A  /\  0  <_  B ) ) )
4544ifbid 3717 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  B ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
46 ibar 491 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  C  <->  ( x  e.  A  /\  0  <_  C ) ) )
4746ifbid 3717 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  C ,  C ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
4845, 47oveq12d 6058 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4943, 48eqtr2d 2437 . . . . . . . 8  |-  ( x  e.  A  ->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
50 00id 9197 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
51 simpl 444 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  B )  ->  x  e.  A )
5251con3i 129 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  B ) )
53 iffalse 3706 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  B )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
5452, 53syl 16 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
55 simpl 444 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  C )  ->  x  e.  A )
5655con3i 129 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  C ) )
57 iffalse 3706 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  C )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5856, 57syl 16 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5954, 58oveq12d 6058 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( 0  +  0 ) )
60 iffalse 3706 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  0 )
6150, 59, 603eqtr4a 2462 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
6249, 61pm2.61i 158 . . . . . . 7  |-  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )
6362mpteq2i 4252 . . . . . 6  |-  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
6442, 63syl6eq 2452 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )
6564fveq2d 5691 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) ) )
66 ibladd.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
6766, 3mbfdm2 19483 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
68 mblss 19380 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
6967, 68syl 16 . . . . . 6  |-  ( ph  ->  A  C_  RR )
70 rembl 19388 . . . . . . 7  |-  RR  e.  dom  vol
7170a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  dom  vol )
7232adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
73 eldifn 3430 . . . . . . . . 9  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
7473adantl 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
7574intnanrd 884 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  (
x  e.  A  /\  0  <_  B ) )
7675, 53syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
7745mpteq2ia 4251 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
783, 66mbfpos 19496 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
7977, 78syl5eqelr 2489 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
8069, 71, 72, 76, 79mbfss 19491 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
81 max1 10729 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
827, 3, 81sylancr 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
83 elrege0 10963 . . . . . . . . . 10  |-  ( if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) 
+oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  B ,  B , 
0 ) ) )
8429, 82, 83sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) 
+oo ) )
85 elrege0 10963 . . . . . . . . . . 11  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
867, 16, 85mpbir2an 887 . . . . . . . . . 10  |-  0  e.  ( 0 [,)  +oo )
8786a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
8884, 87ifclda 3726 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  ( 0 [,)  +oo ) )
8927, 88syl5eqel 2488 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,)  +oo ) )
9089adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,)  +oo ) )
91 eqid 2404 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
9290, 91fmptd 5852 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
93 ibladd.6 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
9438adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
9574, 58syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
9647mpteq2ia 4251 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  C ,  C ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
97 ibladd.5 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
984, 97mbfpos 19496 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  C ,  C , 
0 ) )  e. MblFn
)
9996, 98syl5eqelr 2489 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  e. MblFn )
10069, 71, 94, 95, 99mbfss 19491 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  e. MblFn )
101 max1 10729 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
1027, 4, 101sylancr 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
103 elrege0 10963 . . . . . . . . . 10  |-  ( if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) 
+oo )  <->  ( if ( 0  <_  C ,  C ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  C ,  C , 
0 ) ) )
10436, 102, 103sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) 
+oo ) )
105104, 87ifclda 3726 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  ( 0 [,)  +oo ) )
10634, 105syl5eqel 2488 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,)  +oo ) )
107106adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,)  +oo ) )
108 eqid 2404 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
109107, 108fmptd 5852 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
110 ibladd.7 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
11180, 92, 93, 100, 109, 110itg2add 19604 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
11265, 111eqtr3d 2438 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
11393, 110readdcld 9071 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  e.  RR )
114112, 113eqeltrd 2478 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR )
11529, 36readdcld 9071 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
116115rexrd 9090 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR* )
11729, 36, 82, 102addge0d 9558 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
118 elxrge0 10964 . . . . . . 7  |-  ( ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,]  +oo )  <->  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR*  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )
119116, 117, 118sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] 
+oo ) )
120119, 19ifclda 3726 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
121120adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
122 eqid 2404 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
123121, 122fmptd 5852 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
124 max2 10731 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
0  <_  B ,  B ,  0 ) )
1257, 3, 124sylancr 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  if ( 0  <_  B ,  B , 
0 ) )
126 max2 10731 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
1277, 4, 126sylancr 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
1283, 4, 29, 36, 125, 127le2addd 9600 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
1292, 128eqbrtrd 4192 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
130 breq1 4175 . . . . . . . . . . 11  |-  ( D  =  if ( 0  <_  D ,  D ,  0 )  -> 
( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
131 breq1 4175 . . . . . . . . . . 11  |-  ( 0  =  if ( 0  <_  D ,  D ,  0 )  -> 
( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
132130, 131ifboth 3730 . . . . . . . . . 10  |-  ( ( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  ->  if (
0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
133129, 117, 132syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
134 iftrue 3705 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
135134adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
13643adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
137133, 135, 1363brtr4d 4202 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
138137ex 424 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
13916a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
140 iffalse 3706 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  0 )
141139, 140, 603brtr4d 4202 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
142138, 141pm2.61d1 153 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
1431, 142syl5eqbr 4205 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
144143ralrimivw 2750 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
145 eqidd 2405 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )
146 eqidd 2405 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
14726, 22, 121, 145, 146ofrfval2 6282 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
148144, 147mpbird 224 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
149 itg2le 19584 . . 3  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
15024, 123, 148, 149syl3anc 1184 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
151 itg2lecl 19583 . 2  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
15224, 114, 150, 151syl3anc 1184 1  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    \ cdif 3277    C_ wss 3280   ifcif 3699   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262    o Rcofr 6263   RRcr 8945   0cc0 8946    + caddc 8949    +oocpnf 9073   RR*cxr 9075    <_ cle 9077   [,)cico 10874   [,]cicc 10875   volcvol 19313  MblFncmbf 19459   S.2citg2 19461
This theorem is referenced by:  ibladd  19665
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-cmp 17404  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-0p 19515
  Copyright terms: Public domain W3C validator