Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibladdnclem Structured version   Unicode version

Theorem ibladdnclem 26275
Description: Lemma for ibladdnc 26276; cf ibladdlem 19714, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 26273. (Contributed by Brendan Leahy, 31-Oct-2017.)
Hypotheses
Ref Expression
ibladdnclem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
ibladdnclem.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
ibladdnclem.3  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
ibladdnclem.4  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
ibladdnclem.6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
ibladdnclem.7  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
Assertion
Ref Expression
ibladdnclem  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    C( x)    D( x)

Proof of Theorem ibladdnclem
StepHypRef Expression
1 ifan 3780 . . . 4  |-  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )
2 ibladdnclem.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  =  ( B  +  C ) )
3 ibladdnclem.1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
4 ibladdnclem.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  RR )
53, 4readdcld 9120 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  e.  RR )
62, 5eqeltrd 2512 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  D  e.  RR )
7 0re 9096 . . . . . . . . 9  |-  0  e.  RR
8 ifcl 3777 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  D ,  D , 
0 )  e.  RR )
96, 7, 8sylancl 645 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR )
109rexrd 9139 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  RR* )
11 max1 10778 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  D  e.  RR )  ->  0  <_  if (
0  <_  D ,  D ,  0 ) )
127, 6, 11sylancr 646 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  D ,  D , 
0 ) )
13 elxrge0 11013 . . . . . . 7  |-  ( if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] 
+oo )  <->  ( if ( 0  <_  D ,  D ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_  D ,  D , 
0 ) ) )
1410, 12, 13sylanbrc 647 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  e.  ( 0 [,] 
+oo ) )
15 0xr 9136 . . . . . . . 8  |-  0  e.  RR*
16 0le0 10086 . . . . . . . 8  |-  0  <_  0
17 elxrge0 11013 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
1815, 16, 17mpbir2an 888 . . . . . . 7  |-  0  e.  ( 0 [,]  +oo )
1918a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
2014, 19ifclda 3768 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
2120adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
221, 21syl5eqel 2522 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  e.  ( 0 [,]  +oo ) )
23 eqid 2438 . . 3  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )
2422, 23fmptd 5896 . 2  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
25 reex 9086 . . . . . . . 8  |-  RR  e.  _V
2625a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  _V )
27 ifan 3780 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )
28 ifcl 3777 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  B ,  B , 
0 )  e.  RR )
293, 7, 28sylancl 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  RR )
307a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  RR )
3129, 30ifclda 3768 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  RR )
3227, 31syl5eqel 2522 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
3332adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
34 ifan 3780 . . . . . . . . 9  |-  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )
35 ifcl 3777 . . . . . . . . . . 11  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
364, 7, 35sylancl 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
3736, 30ifclda 3768 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  RR )
3834, 37syl5eqel 2522 . . . . . . . 8  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
3938adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  RR )
40 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )
41 eqidd 2439 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4226, 33, 39, 40, 41offval2 6325 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )
43 iftrue 3747 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
44 ibar 492 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  B  <->  ( x  e.  A  /\  0  <_  B ) ) )
4544ifbid 3759 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  B ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
46 ibar 492 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
0  <_  C  <->  ( x  e.  A  /\  0  <_  C ) ) )
4746ifbid 3759 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( 0  <_  C ,  C ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
4845, 47oveq12d 6102 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )
4943, 48eqtr2d 2471 . . . . . . . 8  |-  ( x  e.  A  ->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
50 00id 9246 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
51 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  B )  ->  x  e.  A )
5251con3i 130 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  B ) )
53 iffalse 3748 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  B )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
5452, 53syl 16 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
55 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  C )  ->  x  e.  A )
5655con3i 130 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  C ) )
57 iffalse 3748 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  C )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5856, 57syl 16 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  =  0 )
5954, 58oveq12d 6102 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( 0  +  0 ) )
60 iffalse 3748 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  0 )
6150, 59, 603eqtr4a 2496 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
6249, 61pm2.61i 159 . . . . . . 7  |-  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )
6362mpteq2i 4295 . . . . . 6  |-  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  +  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
6442, 63syl6eq 2486 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) )
6564fveq2d 5735 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) ) ) )
66 ibladdnclem.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
6766, 3mbfdm2 19533 . . . . . . 7  |-  ( ph  ->  A  e.  dom  vol )
68 mblss 19432 . . . . . . 7  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
6967, 68syl 16 . . . . . 6  |-  ( ph  ->  A  C_  RR )
70 rembl 19440 . . . . . . 7  |-  RR  e.  dom  vol
7170a1i 11 . . . . . 6  |-  ( ph  ->  RR  e.  dom  vol )
7232adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  RR )
73 eldifn 3472 . . . . . . . . 9  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
7473adantl 454 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
7574intnanrd 885 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  (
x  e.  A  /\  0  <_  B ) )
7675, 53syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  0 )
7745mpteq2ia 4294 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  B ,  B ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
783, 66mbfpos 19546 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  B ,  B , 
0 ) )  e. MblFn
)
7977, 78syl5eqelr 2523 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
8069, 71, 72, 76, 79mbfss 19541 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  e. MblFn )
81 max1 10778 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  0  <_  if (
0  <_  B ,  B ,  0 ) )
827, 3, 81sylancr 646 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  B ,  B , 
0 ) )
83 elrege0 11012 . . . . . . . . . 10  |-  ( if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) 
+oo )  <->  ( if ( 0  <_  B ,  B ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  B ,  B , 
0 ) ) )
8429, 82, 83sylanbrc 647 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  B ,  B ,  0 )  e.  ( 0 [,) 
+oo ) )
85 elrege0 11012 . . . . . . . . . . 11  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
867, 16, 85mpbir2an 888 . . . . . . . . . 10  |-  0  e.  ( 0 [,)  +oo )
8786a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
8884, 87ifclda 3768 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  B ,  B ,  0 ) ,  0 )  e.  ( 0 [,)  +oo ) )
8927, 88syl5eqel 2522 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,)  +oo ) )
9089adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  e.  ( 0 [,)  +oo ) )
91 eqid 2438 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )
9290, 91fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
93 ibladdnclem.6 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  e.  RR )
94 max1 10778 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
957, 4, 94sylancr 646 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
96 elrege0 11012 . . . . . . . . . 10  |-  ( if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) 
+oo )  <->  ( if ( 0  <_  C ,  C ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  C ,  C , 
0 ) ) )
9736, 95, 96sylanbrc 647 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  C ,  C ,  0 )  e.  ( 0 [,) 
+oo ) )
9897, 87ifclda 3768 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  C ,  C ,  0 ) ,  0 )  e.  ( 0 [,)  +oo ) )
9934, 98syl5eqel 2522 . . . . . . 7  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,)  +oo ) )
10099adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 )  e.  ( 0 [,)  +oo ) )
101 eqid 2438 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
102100, 101fmptd 5896 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
103 ibladdnclem.7 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) )  e.  RR )
10480, 92, 93, 102, 103itg2addnc 26273 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
10565, 104eqtr3d 2472 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) ) )
10693, 103readdcld 9120 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) ) ) )  e.  RR )
107105, 106eqeltrd 2512 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR )
10829, 36readdcld 9120 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR )
109108rexrd 9139 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR* )
11029, 36, 82, 95addge0d 9607 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
111 elxrge0 11013 . . . . . . 7  |-  ( ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,]  +oo )  <->  ( ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR*  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ) )
112109, 110, 111sylanbrc 647 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  e.  ( 0 [,] 
+oo ) )
113112, 19ifclda 3768 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
114113adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
115 eqid 2438 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
116114, 115fmptd 5896 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
117 max2 10780 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  B  <_  if (
0  <_  B ,  B ,  0 ) )
1187, 3, 117sylancr 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  <_  if ( 0  <_  B ,  B , 
0 ) )
119 max2 10780 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
1207, 4, 119sylancr 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
1213, 4, 29, 36, 118, 120le2addd 9649 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( B  +  C )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
1222, 121eqbrtrd 4235 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
123 breq1 4218 . . . . . . . . . . 11  |-  ( D  =  if ( 0  <_  D ,  D ,  0 )  -> 
( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
124 breq1 4218 . . . . . . . . . . 11  |-  ( 0  =  if ( 0  <_  D ,  D ,  0 )  -> 
( 0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  <-> 
if ( 0  <_  D ,  D , 
0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
125123, 124ifboth 3772 . . . . . . . . . 10  |-  ( ( D  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) )  /\  0  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )  ->  if (
0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
126122, 110, 125syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  D ,  D ,  0 )  <_  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) )
127 iftrue 3747 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
128127adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  if ( 0  <_  D ,  D ,  0 ) )
12943adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 )  =  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) )
130126, 128, 1293brtr4d 4245 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
131130ex 425 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
13216a1i 11 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
133 iffalse 3748 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  =  0 )
134132, 133, 603brtr4d 4245 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D , 
0 ) ,  0 )  <_  if (
x  e.  A , 
( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C , 
0 ) ) ,  0 ) )
135131, 134pm2.61d1 154 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  D ,  D ,  0 ) ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
1361, 135syl5eqbr 4248 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
137136ralrimivw 2792 . . . 4  |-  ( ph  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )
138 eqidd 2439 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )
139 eqidd 2439 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
14026, 22, 114, 138, 139ofrfval2 6326 . . . 4  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 )  <_  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
141137, 140mpbird 225 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )
142 itg2le 19634 . . 3  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
14324, 116, 141, 142syl3anc 1185 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )
144 itg2lecl 19633 . 2  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B , 
0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( if ( 0  <_  B ,  B ,  0 )  +  if ( 0  <_  C ,  C ,  0 ) ) ,  0 ) ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
14524, 107, 143, 144syl3anc 1185 1  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  D ) ,  D ,  0 ) ) )  e.  RR )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ifcif 3741   class class class wbr 4215    e. cmpt 4269   dom cdm 4881   -->wf 5453   ` cfv 5457  (class class class)co 6084    o Fcof 6306    o Rcofr 6307   RRcr 8994   0cc0 8995    + caddc 8998    +oocpnf 9122   RR*cxr 9124    <_ cle 9126   [,)cico 10923   [,]cicc 10924   volcvol 19365  MblFncmbf 19511   S.2citg2 19513
This theorem is referenced by:  ibladdnc  26276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-rest 13655  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-cmp 17455  df-ovol 19366  df-vol 19367  df-mbf 19516  df-itg1 19517  df-itg2 19518
  Copyright terms: Public domain W3C validator