MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblconst Structured version   Unicode version

Theorem iblconst 19712
Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
iblconst  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L ^1 )

Proof of Theorem iblconst
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpt 4924 . 2  |-  ( A  X.  { B }
)  =  ( x  e.  A  |->  B )
2 mbfconst 19530 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn
)
323adant2 977 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e. MblFn )
41, 3syl5eqelr 2523 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e. MblFn )
5 ifan 3780 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
65mpteq2i 4295 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
76fveq2i 5734 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )
8 simpl1 961 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  A  e.  dom  vol )
9 simpl2 962 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( vol `  A
)  e.  RR )
10 simpl3 963 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  B  e.  CC )
11 elfzelz 11064 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1211adantl 454 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  k  e.  ZZ )
13 ax-icn 9054 . . . . . . . . . . . . 13  |-  _i  e.  CC
14 ine0 9474 . . . . . . . . . . . . 13  |-  _i  =/=  0
15 expclz 11411 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1613, 14, 15mp3an12 1270 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1712, 16syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  e.  CC )
18 expne0i 11417 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
1913, 14, 18mp3an12 1270 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2012, 19syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( _i ^
k )  =/=  0
)
2110, 17, 20divcld 9795 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( B  / 
( _i ^ k
) )  e.  CC )
2221recld 12004 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  e.  RR )
23 0re 9096 . . . . . . . . 9  |-  0  e.  RR
24 ifcl 3777 . . . . . . . . 9  |-  ( ( ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2522, 23, 24sylancl 645 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  RR )
26 max1 10778 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( B  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) )
2723, 22, 26sylancr 646 . . . . . . . 8  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  0  <_  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )
28 elrege0 11012 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )
2925, 27, 28sylanbrc 647 . . . . . . 7  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,)  +oo ) )
30 itg2const 19635 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,)  +oo ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
318, 9, 29, 30syl3anc 1185 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) ) )  =  ( if ( 0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 )  x.  ( vol `  A ) ) )
327, 31syl5eq 2482 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) ) )
3325, 9remulcld 9121 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( if ( 0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  x.  ( vol `  A
) )  e.  RR )
3432, 33eqeltrd 2512 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  k  e.  (
0 ... 3 ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
3534ralrimiva 2791 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
36 eqidd 2439 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
37 eqidd 2439 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  ( Re `  ( B  /  (
_i ^ k ) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) ) )
38 simpl3 963 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  /\  x  e.  A
)  ->  B  e.  CC )
3936, 37, 38isibl2 19661 . . 3  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
404, 35, 39mpbir2and 890 . 2  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( x  e.  A  |->  B )  e.  L ^1 )
411, 40syl5eqel 2522 1  |-  ( ( A  e.  dom  vol  /\  ( vol `  A
)  e.  RR  /\  B  e.  CC )  ->  ( A  X.  { B } )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   ifcif 3741   {csn 3816   class class class wbr 4215    e. cmpt 4269    X. cxp 4879   dom cdm 4881   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   _ici 8997    x. cmul 9000    +oocpnf 9122    <_ cle 9126    / cdiv 9682   3c3 10055   ZZcz 10287   [,)cico 10923   ...cfz 11048   ^cexp 11387   Recre 11907   volcvol 19365  MblFncmbf 19511   S.2citg2 19513   L ^1cibl 19514
This theorem is referenced by:  itgconst  19713  bddibl  19734  ftc1lem4  19928  itgulm  20329  ftc1cnnclem  26292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xadd 10716  df-ioo 10925  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-xmet 16700  df-met 16701  df-ovol 19366  df-vol 19367  df-mbf 19516  df-itg1 19517  df-itg2 19518  df-ibl 19519  df-0p 19565
  Copyright terms: Public domain W3C validator