MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Unicode version

Theorem iblitg 19123
Description: If a function is integrable, then the  S.2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1  |-  ( ph  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
iblitg.2  |-  ( (
ph  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ K ) ) ) )
iblitg.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
iblitg.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
iblitg  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( S.2 `  G )  e.  RR )
Distinct variable groups:    x, A    x, K    ph, x    x, V
Allowed substitution hints:    B( x)    T( x)    G( x)

Proof of Theorem iblitg
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5  |-  ( ph  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
21adantr 451 . . . 4  |-  ( (
ph  /\  K  e.  ZZ )  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
3 iblitg.2 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ K ) ) ) )
43adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  ZZ )  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ K ) ) ) )
5 iexpcyc 11207 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )
65oveq2d 5874 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( B  /  ( _i ^
( K  mod  4
) ) )  =  ( B  /  (
_i ^ K ) ) )
76fveq2d 5529 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (
Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) )  =  ( Re `  ( B  /  (
_i ^ K ) ) ) )
87ad2antlr 707 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  ZZ )  /\  x  e.  A )  ->  (
Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) )  =  ( Re `  ( B  /  (
_i ^ K ) ) ) )
94, 8eqtr4d 2318 . . . . . 6  |-  ( ( ( ph  /\  K  e.  ZZ )  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ ( K  mod  4 ) ) ) ) )
109ibllem 19119 . . . . 5  |-  ( (
ph  /\  K  e.  ZZ )  ->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ,  0 ) )
1110mpteq2dv 4107 . . . 4  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )
122, 11eqtrd 2315 . . 3  |-  ( (
ph  /\  K  e.  ZZ )  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )
1312fveq2d 5529 . 2  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( S.2 `  G )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ,  0 ) ) ) )
14 4nn 9879 . . . . . 6  |-  4  e.  NN
15 zmodfz 10991 . . . . . 6  |-  ( ( K  e.  ZZ  /\  4  e.  NN )  ->  ( K  mod  4
)  e.  ( 0 ... ( 4  -  1 ) ) )
1614, 15mpan2 652 . . . . 5  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  e.  ( 0 ... (
4  -  1 ) ) )
17 4cn 9820 . . . . . . 7  |-  4  e.  CC
18 ax-1cn 8795 . . . . . . 7  |-  1  e.  CC
19 3cn 9818 . . . . . . 7  |-  3  e.  CC
2018, 19addcomi 9003 . . . . . . . 8  |-  ( 1  +  3 )  =  ( 3  +  1 )
21 df-4 9806 . . . . . . . 8  |-  4  =  ( 3  +  1 )
2220, 21eqtr4i 2306 . . . . . . 7  |-  ( 1  +  3 )  =  4
2317, 18, 19, 22subaddrii 9135 . . . . . 6  |-  ( 4  -  1 )  =  3
2423oveq2i 5869 . . . . 5  |-  ( 0 ... ( 4  -  1 ) )  =  ( 0 ... 3
)
2516, 24syl6eleq 2373 . . . 4  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  e.  ( 0 ... 3
) )
2625adantl 452 . . 3  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( K  mod  4 )  e.  ( 0 ... 3
) )
27 iblitg.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
28 eqidd 2284 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
29 eqidd 2284 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( B  /  (
_i ^ k ) ) ) )
30 iblitg.4 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
3128, 29, 30isibl2 19121 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
3227, 31mpbid 201 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) )
3332simprd 449 . . . 4  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
3433adantr 451 . . 3  |-  ( (
ph  /\  K  e.  ZZ )  ->  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
35 oveq2 5866 . . . . . . . . . . . 12  |-  ( k  =  ( K  mod  4 )  ->  (
_i ^ k )  =  ( _i ^
( K  mod  4
) ) )
3635oveq2d 5874 . . . . . . . . . . 11  |-  ( k  =  ( K  mod  4 )  ->  ( B  /  ( _i ^
k ) )  =  ( B  /  (
_i ^ ( K  mod  4 ) ) ) )
3736fveq2d 5529 . . . . . . . . . 10  |-  ( k  =  ( K  mod  4 )  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( B  /  (
_i ^ ( K  mod  4 ) ) ) ) )
3837breq2d 4035 . . . . . . . . 9  |-  ( k  =  ( K  mod  4 )  ->  (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) )  <->  0  <_  ( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) )
3938anbi2d 684 . . . . . . . 8  |-  ( k  =  ( K  mod  4 )  ->  (
( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) )  <-> 
( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ) ) )
40 eqidd 2284 . . . . . . . 8  |-  ( k  =  ( K  mod  4 )  ->  0  =  0 )
4139, 37, 40ifbieq12d 3587 . . . . . . 7  |-  ( k  =  ( K  mod  4 )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) )
4241mpteq2dv 4107 . . . . . 6  |-  ( k  =  ( K  mod  4 )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )
4342fveq2d 5529 . . . . 5  |-  ( k  =  ( K  mod  4 )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) ) )
4443eleq1d 2349 . . . 4  |-  ( k  =  ( K  mod  4 )  ->  (
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR  <->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )  e.  RR ) )
4544rspcv 2880 . . 3  |-  ( ( K  mod  4 )  e.  ( 0 ... 3 )  ->  ( A. k  e.  (
0 ... 3 ) ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )  e.  RR ) )
4626, 34, 45sylc 56 . 2  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
( K  mod  4
) ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ ( K  mod  4 ) ) ) ) ,  0 ) ) )  e.  RR )
4713, 46eqeltrd 2357 1  |-  ( (
ph  /\  K  e.  ZZ )  ->  ( S.2 `  G )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738   _ici 8739    + caddc 8740    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   3c3 9796   4c4 9797   ZZcz 10024   ...cfz 10782    mod cmo 10973   ^cexp 11104   Recre 11582  MblFncmbf 18969   S.2citg2 18971   L ^1cibl 18972
This theorem is referenced by:  itgcl  19138  itgcnlem  19144  iblss  19159  iblss2  19160  itgsplit  19190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-ibl 18978
  Copyright terms: Public domain W3C validator