MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss Structured version   Unicode version

Theorem iblss 19696
Description: A subset of an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
iblss.1  |-  ( ph  ->  A  C_  B )
iblss.2  |-  ( ph  ->  A  e.  dom  vol )
iblss.3  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
iblss.4  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
Assertion
Ref Expression
iblss  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
Distinct variable groups:    x, A    x, B    ph, x    x, V
Allowed substitution hint:    C( x)

Proof of Theorem iblss
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iblss.1 . . . 4  |-  ( ph  ->  A  C_  B )
2 resmpt 5191 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
31, 2syl 16 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
4 iblss.4 . . . . 5  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
5 iblmbf 19659 . . . . 5  |-  ( ( x  e.  B  |->  C )  e.  L ^1 
->  ( x  e.  B  |->  C )  e. MblFn )
64, 5syl 16 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
7 iblss.2 . . . 4  |-  ( ph  ->  A  e.  dom  vol )
8 mbfres 19536 . . . 4  |-  ( ( ( x  e.  B  |->  C )  e. MblFn  /\  A  e.  dom  vol )  -> 
( ( x  e.  B  |->  C )  |`  A )  e. MblFn )
96, 7, 8syl2anc 643 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  C )  |`  A )  e. MblFn )
103, 9eqeltrrd 2511 . 2  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
11 ifan 3778 . . . . . 6  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
12 simpll 731 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  ph )
131sselda 3348 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  B )
1412, 13sylan 458 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  A
)  ->  x  e.  B )
15 iblss.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
166, 15mbfmptcl 19529 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
1712, 16sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  C  e.  CC )
18 elfzelz 11059 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1918ad3antlr 712 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  k  e.  ZZ )
20 ax-icn 9049 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
21 ine0 9469 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
22 expclz 11406 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
2320, 21, 22mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
2419, 23syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  ( _i ^ k )  e.  CC )
25 expne0i 11412 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
2620, 21, 25mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2719, 26syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  ( _i ^ k )  =/=  0 )
2817, 24, 27divcld 9790 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  ( C  /  ( _i ^
k ) )  e.  CC )
2928recld 11999 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  ( Re `  ( C  /  (
_i ^ k ) ) )  e.  RR )
30 0re 9091 . . . . . . . . . . 11  |-  0  e.  RR
31 ifcl 3775 . . . . . . . . . . 11  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
3229, 30, 31sylancl 644 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  e.  RR )
3332rexrd 9134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  e. 
RR* )
34 max1 10773 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
3530, 29, 34sylancr 645 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  0  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
36 elxrge0 11008 . . . . . . . . 9  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
3733, 35, 36sylanbrc 646 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
3814, 37syldan 457 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  A
)  ->  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
39 0xr 9131 . . . . . . . . 9  |-  0  e.  RR*
40 0le0 10081 . . . . . . . . 9  |-  0  <_  0
41 elxrge0 11008 . . . . . . . . 9  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
4239, 40, 41mpbir2an 887 . . . . . . . 8  |-  0  e.  ( 0 [,]  +oo )
4342a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
4438, 43ifclda 3766 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] 
+oo ) )
4511, 44syl5eqel 2520 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
46 eqid 2436 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
4745, 46fmptd 5893 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo ) )
48 eqidd 2437 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
49 eqidd 2437 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
5048, 49, 4, 15iblitg 19660 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
5118, 50sylan2 461 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
52 ifan 3778 . . . . . . 7  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5342a1i 11 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  0  e.  ( 0 [,]  +oo ) )
5437, 53ifclda 3766 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  e.  ( 0 [,] 
+oo ) )
5552, 54syl5eqel 2520 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
56 eqid 2436 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
5755, 56fmptd 5893 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo ) )
5832leidd 9593 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
59 breq1 4215 . . . . . . . . . . . 12  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  ->  ( if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  <->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
60 breq1 4215 . . . . . . . . . . . 12  |-  ( 0  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  ->  ( 0  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  <->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  <_  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
6159, 60ifboth 3770 . . . . . . . . . . 11  |-  ( ( if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  /\  0  <_  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )  ->  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  <_  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
6258, 35, 61syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  <_  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
63 iftrue 3745 . . . . . . . . . . 11  |-  ( x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
6463adantl 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
6562, 64breqtrrd 4238 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  x  e.  B
)  ->  if (
x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  <_  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
6640a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  0  <_  0 )
6714ex 424 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  (
x  e.  A  ->  x  e.  B )
)
6867con3and 429 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  -.  x  e.  A )
69 iffalse 3746 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
7068, 69syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
71 iffalse 3746 . . . . . . . . . . 11  |-  ( -.  x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
7271adantl 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
7366, 70, 723brtr4d 4242 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  x  e.  RR )  /\  -.  x  e.  B )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  <_  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
7465, 73pm2.61dan 767 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  <_  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
7574, 11, 523brtr4g 4244 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  <_  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
7675ralrimiva 2789 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
77 reex 9081 . . . . . . . 8  |-  RR  e.  _V
7877a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  RR  e.  _V )
79 eqidd 2437 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
80 eqidd 2437 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
8178, 45, 55, 79, 80ofrfval2 6323 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  o R  <_  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  <_  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
8276, 81mpbird 224 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  o R  <_  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )
83 itg2le 19631 . . . . 5  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  o R  <_  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  <_  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8447, 57, 82, 83syl3anc 1184 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
85 itg2lecl 19630 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) : RR --> ( 0 [,] 
+oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  <_ 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) ) )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
8647, 51, 84, 85syl3anc 1184 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
8786ralrimiva 2789 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
88 eqidd 2437 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
89 eqidd 2437 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
9013, 16syldan 457 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
9188, 89, 90isibl2 19658 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  C )  e.  L ^1  <->  ( (
x  e.  A  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
9210, 87, 91mpbir2and 889 1  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   _Vcvv 2956    C_ wss 3320   ifcif 3739   class class class wbr 4212    e. cmpt 4266   dom cdm 4878    |` cres 4880   -->wf 5450   ` cfv 5454  (class class class)co 6081    o Rcofr 6304   CCcc 8988   RRcr 8989   0cc0 8990   _ici 8992    +oocpnf 9117   RR*cxr 9119    <_ cle 9121    / cdiv 9677   3c3 10050   ZZcz 10282   [,]cicc 10919   ...cfz 11043   ^cexp 11382   Recre 11902   volcvol 19360  MblFncmbf 19506   S.2citg2 19508   L ^1cibl 19509
This theorem is referenced by:  itgss3  19706  itgless  19708  bddmulibl  19730  itgcn  19734  ditgcl  19745  ditgswap  19746  ditgsplitlem  19747  ftc1lem1  19919  ftc1lem2  19920  ftc1a  19921  ftc1lem4  19923  ftc2  19928  ftc2ditglem  19929  itgsubstlem  19932  ftc1cnnclem  26278  ftc1anc  26288  ftc2nc  26289  areacirc  26297  lhe4.4ex1a  27523  itgsin0pilem1  27720  iblioosinexp  27723  itgsinexplem1  27724  itgsinexp  27725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xadd 10711  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-xmet 16695  df-met 16696  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-itg2 19514  df-ibl 19515
  Copyright terms: Public domain W3C validator