MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Unicode version

Theorem iblss2 19375
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1  |-  ( ph  ->  A  C_  B )
iblss2.2  |-  ( ph  ->  B  e.  dom  vol )
iblss2.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
iblss2.4  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
iblss2.5  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
Assertion
Ref Expression
iblss2  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
Distinct variable groups:    x, A    x, B    ph, x    x, V
Allowed substitution hint:    C( x)

Proof of Theorem iblss2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3  |-  ( ph  ->  A  C_  B )
2 iblss2.2 . . 3  |-  ( ph  ->  B  e.  dom  vol )
3 iblss2.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
4 iblss2.4 . . 3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  = 
0 )
5 iblss2.5 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
6 iblmbf 19337 . . . 4  |-  ( ( x  e.  A  |->  C )  e.  L ^1 
->  ( x  e.  A  |->  C )  e. MblFn )
75, 6syl 15 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
81, 2, 3, 4, 7mbfss 19216 . 2  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
91adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  C_  B )
109sselda 3266 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  x  e.  B )
11 iftrue 3660 . . . . . . . . . 10  |-  ( x  e.  B  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
1210, 11syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
13 iftrue 3660 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
1413adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
1512, 14eqtr4d 2401 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
16 ifid 3686 . . . . . . . . 9  |-  if ( x  e.  B , 
0 ,  0 )  =  0
17 simplll 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ph )
18 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  x  e.  B )
19 simplr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  -.  x  e.  A )
20 eldif 3248 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
2118, 19, 20sylanbrc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  x  e.  ( B  \  A
) )
2217, 21, 4syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  C  =  0 )
2322oveq1d 5996 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  ( 0  /  (
_i ^ k ) ) )
24 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  k  e.  ( 0 ... 3
) )
25 elfzelz 10951 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
26 ax-icn 8943 . . . . . . . . . . . . . . . . 17  |-  _i  e.  CC
27 ine0 9362 . . . . . . . . . . . . . . . . 17  |-  _i  =/=  0
28 expclz 11293 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
29 expne0i 11299 . . . . . . . . . . . . . . . . . 18  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
3028, 29div0d 9682 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
0  /  ( _i
^ k ) )  =  0 )
3126, 27, 30mp3an12 1268 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  /  ( _i
^ k ) )  =  0 )
3224, 25, 313syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
0  /  ( _i
^ k ) )  =  0 )
3323, 32eqtrd 2398 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  ( C  /  ( _i ^
k ) )  =  0 )
3433fveq2d 5636 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re ` 
0 ) )
35 re0 11844 . . . . . . . . . . . . 13  |-  ( Re
`  0 )  =  0
3634, 35syl6eq 2414 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  0 )
3736ifeq1d 3668 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 ) )
38 ifid 3686 . . . . . . . . . . 11  |-  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ,  0 )  =  0
3937, 38syl6eq 2414 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... 3 ) )  /\  -.  x  e.  A )  /\  x  e.  B )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  0 )
4039ifeq1da 3679 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  B ,  0 ,  0 ) )
41 iffalse 3661 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  0 )
4241adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  0 )
4316, 40, 423eqtr4a 2424 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  if ( x  e.  B ,  if ( 0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
4415, 43pm2.61dan 766 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
45 ifan 3693 . . . . . . 7  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
46 ifan 3693 . . . . . . 7  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
4744, 45, 463eqtr4g 2423 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
4847mpteq2dv 4209 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
4948fveq2d 5636 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
50 eqidd 2367 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
51 eqidd 2367 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
5250, 51, 5, 3iblitg 19338 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
5325, 52sylan2 460 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
5449, 53eqeltrd 2440 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
5554ralrimiva 2711 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
56 eqidd 2367 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
57 eqidd 2367 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
58 elun 3404 . . . . . 6  |-  ( x  e.  ( A  u.  ( B  \  A ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )
59 undif2 3619 . . . . . . . 8  |-  ( A  u.  ( B  \  A ) )  =  ( A  u.  B
)
60 ssequn1 3433 . . . . . . . . 9  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
611, 60sylib 188 . . . . . . . 8  |-  ( ph  ->  ( A  u.  B
)  =  B )
6259, 61syl5eq 2410 . . . . . . 7  |-  ( ph  ->  ( A  u.  ( B  \  A ) )  =  B )
6362eleq2d 2433 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A  u.  ( B 
\  A ) )  <-> 
x  e.  B ) )
6458, 63syl5bbr 250 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  \/  x  e.  ( B  \  A
) )  <->  x  e.  B ) )
6564biimpar 471 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  A  \/  x  e.  ( B  \  A ) ) )
667, 3mbfmptcl 19207 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
67 0cn 8978 . . . . . 6  |-  0  e.  CC
684, 67syl6eqel 2454 . . . . 5  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  CC )
6966, 68jaodan 760 . . . 4  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  ( B  \  A
) ) )  ->  C  e.  CC )
7065, 69syldan 456 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
7156, 57, 70isibl2 19336 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e.  L ^1  <->  ( (
x  e.  B  |->  C )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR ) ) )
728, 55, 71mpbir2and 888 1  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628    \ cdif 3235    u. cun 3236    C_ wss 3238   ifcif 3654   class class class wbr 4125    e. cmpt 4179   dom cdm 4792   ` cfv 5358  (class class class)co 5981   CCcc 8882   RRcr 8883   0cc0 8884   _ici 8886    <_ cle 9015    / cdiv 9570   3c3 9943   ZZcz 10175   ...cfz 10935   ^cexp 11269   Recre 11789   volcvol 19038  MblFncmbf 19184   S.2citg2 19186   L ^1cibl 19187
This theorem is referenced by:  itgss3  19384  itgless  19386  areacirc  25706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-n0 10115  df-z 10176  df-uz 10382  df-q 10468  df-rp 10506  df-xadd 10604  df-ioo 10813  df-ico 10815  df-icc 10816  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-hash 11506  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-sum 12367  df-xmet 16586  df-met 16587  df-ovol 19039  df-vol 19040  df-mbf 19190  df-ibl 19193
  Copyright terms: Public domain W3C validator