MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblulm Unicode version

Theorem iblulm 19799
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z  |-  Z  =  ( ZZ>= `  M )
itgulm.m  |-  ( ph  ->  M  e.  ZZ )
itgulm.f  |-  ( ph  ->  F : Z --> L ^1 )
itgulm.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
itgulm.s  |-  ( ph  ->  ( vol `  S
)  e.  RR )
Assertion
Ref Expression
iblulm  |-  ( ph  ->  G  e.  L ^1 )

Proof of Theorem iblulm
Dummy variables  j 
k  r  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . 4  |-  Z  =  ( ZZ>= `  M )
2 itgulm.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 itgulm.f . . . . . 6  |-  ( ph  ->  F : Z --> L ^1 )
4 ffn 5405 . . . . . 6  |-  ( F : Z --> L ^1 
->  F  Fn  Z
)
53, 4syl 15 . . . . 5  |-  ( ph  ->  F  Fn  Z )
6 itgulm.u . . . . 5  |-  ( ph  ->  F ( ~~> u `  S ) G )
7 ulmf2 19779 . . . . 5  |-  ( ( F  Fn  Z  /\  F ( ~~> u `  S ) G )  ->  F : Z --> ( CC  ^m  S ) )
85, 6, 7syl2anc 642 . . . 4  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
9 eqidd 2297 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  x  e.  S ) )  -> 
( ( F `  k ) `  x
)  =  ( ( F `  k ) `
 x ) )
10 eqidd 2297 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  ( G `  x ) )
11 1rp 10374 . . . . 5  |-  1  e.  RR+
1211a1i 10 . . . 4  |-  ( ph  ->  1  e.  RR+ )
131, 2, 8, 9, 10, 6, 12ulmi 19781 . . 3  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. x  e.  S  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  <  1
)
141r19.2uz 11851 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
1513, 14syl 15 . 2  |-  ( ph  ->  E. k  e.  Z  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 )
16 ulmcl 19776 . . . . . . . . 9  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
176, 16syl 15 . . . . . . . 8  |-  ( ph  ->  G : S --> CC )
1817adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G : S --> CC )
1918feqmptd 5591 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( G `  z ) ) )
20 ffvelrn 5679 . . . . . . . . . . . 12  |-  ( ( F : Z --> ( CC 
^m  S )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( CC 
^m  S ) )
218, 20sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
22 elmapi 6808 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2321, 22syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k ) : S --> CC )
2423adantrr 697 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k ) : S --> CC )
25 ffvelrn 5679 . . . . . . . . 9  |-  ( ( ( F `  k
) : S --> CC  /\  z  e.  S )  ->  ( ( F `  k ) `  z
)  e.  CC )
2624, 25sylan 457 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  e.  CC )
27 ffvelrn 5679 . . . . . . . . 9  |-  ( ( G : S --> CC  /\  z  e.  S )  ->  ( G `  z
)  e.  CC )
2818, 27sylan 457 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( G `  z )  e.  CC )
2926, 28nncand 9178 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  =  ( G `  z ) )
3029mpteq2dva 4122 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( z  e.  S  |->  ( G `
 z ) ) )
3119, 30eqtr4d 2331 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ) )
3224feqmptd 5591 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  =  ( z  e.  S  |->  ( ( F `
 k ) `  z ) ) )
33 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : Z --> L ^1 
/\  k  e.  Z
)  ->  ( F `  k )  e.  L ^1 )
343, 33sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  L ^1 )
3534adantrr 697 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e.  L ^1 )
3632, 35eqeltrrd 2371 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( F `  k
) `  z )
)  e.  L ^1 )
3726, 28subcld 9173 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1 ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( G `  z ) )  e.  CC )
38 ulmscl 19774 . . . . . . . . . . 11  |-  ( F ( ~~> u `  S
) G  ->  S  e.  _V )
396, 38syl 15 . . . . . . . . . 10  |-  ( ph  ->  S  e.  _V )
4039adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  S  e.  _V )
4140, 26, 28, 32, 19offval2 6111 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  o F  -  G )  =  ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) )
42 iblmbf 19138 . . . . . . . . . 10  |-  ( ( F `  k )  e.  L ^1  ->  ( F `  k )  e. MblFn )
4335, 42syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( F `  k )  e. MblFn )
44 iblmbf 19138 . . . . . . . . . . . . 13  |-  ( x  e.  L ^1  ->  x  e. MblFn )
4544ssriv 3197 . . . . . . . . . . . 12  |-  L ^1  C_ MblFn
46 fss 5413 . . . . . . . . . . . 12  |-  ( ( F : Z --> L ^1 
/\  L ^1  C_ MblFn )  ->  F : Z -->MblFn )
473, 45, 46sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  F : Z -->MblFn )
481, 2, 47, 6mbfulm 19798 . . . . . . . . . 10  |-  ( ph  ->  G  e. MblFn )
4948adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e. MblFn )
5043, 49mbfsub 19033 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
( F `  k
)  o F  -  G )  e. MblFn )
5141, 50eqeltrrd 2371 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e. MblFn )
52 eqid 2296 . . . . . . . . . . 11  |-  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  =  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )
5337, 52fmptd 5700 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) : S --> CC )
54 fdm 5409 . . . . . . . . . 10  |-  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) : S --> CC  ->  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  S )
5553, 54syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  S )
5655fveq2d 5545 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  =  ( vol `  S ) )
57 itgulm.s . . . . . . . . 9  |-  ( ph  ->  ( vol `  S
)  e.  RR )
5857adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  S )  e.  RR )
5956, 58eqeltrd 2370 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR )
60 1re 8853 . . . . . . . 8  |-  1  e.  RR
61 ffvelrn 5679 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  k
) : S --> CC  /\  x  e.  S )  ->  ( ( F `  k ) `  x
)  e.  CC )
6223, 61sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( F `  k
) `  x )  e.  CC )
6317adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  G : S --> CC )
64 ffvelrn 5679 . . . . . . . . . . . . . . . 16  |-  ( ( G : S --> CC  /\  x  e.  S )  ->  ( G `  x
)  e.  CC )
6563, 64sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( G `  x )  e.  CC )
6662, 65subcld 9173 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( ( F `  k ) `  x
)  -  ( G `
 x ) )  e.  CC )
6766abscld 11934 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )  e.  RR )
68 ltle 8926 . . . . . . . . . . . . 13  |-  ( ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
6967, 60, 68sylancl 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <_  1 ) )
70 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( F `  k
) `  z )  =  ( ( F `
 k ) `  x ) )
71 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  ( G `  z )  =  ( G `  x ) )
7270, 71oveq12d 5892 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  (
( ( F `  k ) `  z
)  -  ( G `
 z ) )  =  ( ( ( F `  k ) `
 x )  -  ( G `  x ) ) )
73 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  k
) `  x )  -  ( G `  x ) )  e. 
_V
7472, 52, 73fvmpt 5618 . . . . . . . . . . . . . . 15  |-  ( x  e.  S  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
7574adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
)  =  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )
7675fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) `
 x ) )  =  ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) ) )
7776breq1d 4049 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1  <->  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <_  1 ) )
7869, 77sylibrd 225 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  S )  ->  (
( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  -> 
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
7978ralimdva 2634 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
) )
8079impr 602 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
8155raleqdv 2755 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1  <->  A. x  e.  S  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
8280, 81mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  1
)
83 breq2 4043 . . . . . . . . . 10  |-  ( r  =  1  ->  (
( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r  <->  ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) `  x ) )  <_  1 ) )
8483ralbidv 2576 . . . . . . . . 9  |-  ( r  =  1  ->  ( A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r  <->  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
) )
8584rspcev 2897 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A. x  e.  dom  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  1
)  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
8660, 82, 85sylancr 644 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  E. r  e.  RR  A. x  e. 
dom  ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) ( abs `  ( ( z  e.  S  |->  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) ) `  x
) )  <_  r
)
87 bddibl 19210 . . . . . . 7  |-  ( ( ( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  e. MblFn  /\  ( vol `  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  RR  /\  E. r  e.  RR  A. x  e.  dom  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) ( abs `  (
( z  e.  S  |->  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) `  x
) )  <_  r
)  ->  ( z  e.  S  |->  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  e.  L ^1 )
8851, 59, 86, 87syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  e.  L ^1 )
8926, 36, 37, 88iblsub 19192 . . . . 5  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  (
z  e.  S  |->  ( ( ( F `  k ) `  z
)  -  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) ) )  e.  L ^1 )
9031, 89eqeltrd 2370 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  A. x  e.  S  ( abs `  ( ( ( F `
 k ) `  x )  -  ( G `  x )
) )  <  1
) )  ->  G  e.  L ^1 )
9190expr 598 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. x  e.  S  ( abs `  ( ( ( F `  k
) `  x )  -  ( G `  x ) ) )  <  1  ->  G  e.  L ^1 ) )
9291rexlimdva 2680 . 2  |-  ( ph  ->  ( E. k  e.  Z  A. x  e.  S  ( abs `  (
( ( F `  k ) `  x
)  -  ( G `
 x ) ) )  <  1  ->  G  e.  L ^1 ) )
9315, 92mpd 14 1  |-  ( ph  ->  G  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   dom cdm 4705    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092    ^m cmap 6788   CCcc 8751   RRcr 8752   1c1 8754    < clt 8883    <_ cle 8884    - cmin 9053   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   abscabs 11735   volcvol 18839  MblFncmbf 18985   L ^1cibl 18988   ~~> uculm 19771
This theorem is referenced by:  itgulm  19800  itgulm2  19801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cn 16973  df-cnp 16974  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-0p 19041  df-ulm 19772
  Copyright terms: Public domain W3C validator