Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Unicode version

Theorem iccbnd 26564
Description: A closed interval in  RR is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1  |-  J  =  ( A [,] B
)
iccbnd.2  |-  M  =  ( ( abs  o.  -  )  |`  ( J  X.  J ) )
Assertion
Ref Expression
iccbnd  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  M  e.  ( Bnd `  J ) )

Proof of Theorem iccbnd
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3  |-  M  =  ( ( abs  o.  -  )  |`  ( J  X.  J ) )
2 cnmet 18281 . . . 4  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
3 iccbnd.1 . . . . . 6  |-  J  =  ( A [,] B
)
4 iccssre 10731 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
53, 4syl5eqss 3222 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  J  C_  RR )
6 ax-resscn 8794 . . . . 5  |-  RR  C_  CC
75, 6syl6ss 3191 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  J  C_  CC )
8 metres2 17927 . . . 4  |-  ( ( ( abs  o.  -  )  e.  ( Met `  CC )  /\  J  C_  CC )  ->  (
( abs  o.  -  )  |`  ( J  X.  J
) )  e.  ( Met `  J ) )
92, 7, 8sylancr 644 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs  o.  -  )  |`  ( J  X.  J ) )  e.  ( Met `  J
) )
101, 9syl5eqel 2367 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  M  e.  ( Met `  J ) )
11 resubcl 9111 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
1211ancoms 439 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  -  A
)  e.  RR )
131oveqi 5871 . . . . . . 7  |-  ( x M y )  =  ( x ( ( abs  o.  -  )  |`  ( J  X.  J
) ) y )
14 ovres 5987 . . . . . . . 8  |-  ( ( x  e.  J  /\  y  e.  J )  ->  ( x ( ( abs  o.  -  )  |`  ( J  X.  J
) ) y )  =  ( x ( abs  o.  -  )
y ) )
1514adantl 452 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x ( ( abs  o.  -  )  |`  ( J  X.  J
) ) y )  =  ( x ( abs  o.  -  )
y ) )
1613, 15syl5eq 2327 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x M y )  =  ( x ( abs  o.  -  ) y ) )
177sselda 3180 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  x  e.  J
)  ->  x  e.  CC )
187sselda 3180 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  J
)  ->  y  e.  CC )
1917, 18anim12dan 810 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x  e.  CC  /\  y  e.  CC ) )
20 eqid 2283 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2120cnmetdval 18280 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
2219, 21syl 15 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
2316, 22eqtrd 2315 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x M y )  =  ( abs `  ( x  -  y
) ) )
24 simprr 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
y  e.  J )
2524, 3syl6eleq 2373 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
y  e.  ( A [,] B ) )
26 elicc2 10715 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
2726adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
2825, 27mpbid 201 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
2928simp1d 967 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
y  e.  RR )
3012adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( B  -  A
)  e.  RR )
31 resubcl 9111 . . . . . . . 8  |-  ( ( y  e.  RR  /\  ( B  -  A
)  e.  RR )  ->  ( y  -  ( B  -  A
) )  e.  RR )
3229, 30, 31syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  -  ( B  -  A )
)  e.  RR )
33 simpll 730 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  A  e.  RR )
34 simprl 732 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  x  e.  J )
3534, 3syl6eleq 2373 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  x  e.  ( A [,] B ) )
36 elicc2 10715 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
3736adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
3835, 37mpbid 201 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )
3938simp1d 967 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  x  e.  RR )
40 simplr 731 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  B  e.  RR )
4128simp3d 969 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
y  <_  B )
4229, 40, 33, 41lesub1dd 9388 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  -  A
)  <_  ( B  -  A ) )
4329, 33, 30, 42subled 9375 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  -  ( B  -  A )
)  <_  A )
4438simp2d 968 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  A  <_  x )
4532, 33, 39, 43, 44letrd 8973 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  -  ( B  -  A )
)  <_  x )
4629, 30readdcld 8862 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( y  +  ( B  -  A ) )  e.  RR )
4738simp3d 969 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  x  <_  B )
4828simp2d 968 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  A  <_  y )
4933, 29, 40, 48lesub2dd 9389 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( B  -  y
)  <_  ( B  -  A ) )
5040, 29, 30lesubadd2d 9371 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( B  -  y )  <_  ( B  -  A )  <->  B  <_  ( y  +  ( B  -  A
) ) ) )
5149, 50mpbid 201 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  B  <_  ( y  +  ( B  -  A
) ) )
5239, 40, 46, 47, 51letrd 8973 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  ->  x  <_  ( y  +  ( B  -  A
) ) )
5339, 29, 30absdifled 11917 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( ( abs `  (
x  -  y ) )  <_  ( B  -  A )  <->  ( (
y  -  ( B  -  A ) )  <_  x  /\  x  <_  ( y  +  ( B  -  A ) ) ) ) )
5445, 52, 53mpbir2and 888 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( abs `  (
x  -  y ) )  <_  ( B  -  A ) )
5523, 54eqbrtrd 4043 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  J  /\  y  e.  J ) )  -> 
( x M y )  <_  ( B  -  A ) )
5655ralrimivva 2635 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  J  A. y  e.  J  ( x M y )  <_  ( B  -  A ) )
57 breq2 4027 . . . . 5  |-  ( r  =  ( B  -  A )  ->  (
( x M y )  <_  r  <->  ( x M y )  <_ 
( B  -  A
) ) )
58572ralbidv 2585 . . . 4  |-  ( r  =  ( B  -  A )  ->  ( A. x  e.  J  A. y  e.  J  ( x M y )  <_  r  <->  A. x  e.  J  A. y  e.  J  ( x M y )  <_ 
( B  -  A
) ) )
5958rspcev 2884 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  A. x  e.  J  A. y  e.  J  (
x M y )  <_  ( B  -  A ) )  ->  E. r  e.  RR  A. x  e.  J  A. y  e.  J  (
x M y )  <_  r )
6012, 56, 59syl2anc 642 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. r  e.  RR  A. x  e.  J  A. y  e.  J  (
x M y )  <_  r )
61 isbnd3b 26509 . 2  |-  ( M  e.  ( Bnd `  J
)  <->  ( M  e.  ( Met `  J
)  /\  E. r  e.  RR  A. x  e.  J  A. y  e.  J  ( x M y )  <_  r
) )
6210, 60, 61sylanbrc 645 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  M  e.  ( Bnd `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    X. cxp 4687    |` cres 4691    o. ccom 4693   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736    + caddc 8740    <_ cle 8868    - cmin 9037   [,]cicc 10659   abscabs 11719   Metcme 16370   Bndcbnd 26491
This theorem is referenced by:  icccmpALT  26565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-ec 6662  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-xmet 16373  df-met 16374  df-bl 16375  df-bnd 26503
  Copyright terms: Public domain W3C validator