MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Unicode version

Theorem icccmp 18544
Description: A closed interval in  RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
Assertion
Ref Expression
icccmp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  T  e.  Comp )

Proof of Theorem icccmp
Dummy variables  u  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2  |-  T  =  ( Jt  ( A [,] B ) )
2 icccmp.1 . . . . . . . 8  |-  J  =  ( topGen `  ran  (,) )
3 eqid 2366 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
4 eqid 2366 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  =  {
x  e.  ( A [,] B )  |  E. z  e.  ( ~P u  i^i  Fin ) ( A [,] x )  C_  U. z }
5 simplll 734 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  A  e.  RR )
6 simpllr 735 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  B  e.  RR )
7 simplr 731 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  A  <_  B )
8 elpwi 3722 . . . . . . . . 9  |-  ( u  e.  ~P J  ->  u  C_  J )
98ad2antrl 708 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  u  C_  J )
10 simprr 733 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  ( A [,] B )  C_  U. u )
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 18543 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  B  e.  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z } )
12 oveq2 5989 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A [,] x )  =  ( A [,] B
) )
1312sseq1d 3291 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( A [,] x
)  C_  U. z  <->  ( A [,] B ) 
C_  U. z ) )
1413rexbidv 2649 . . . . . . . . 9  |-  ( x  =  B  ->  ( E. z  e.  ( ~P u  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. z  e.  ( ~P u  i^i  Fin )
( A [,] B
)  C_  U. z
) )
1514elrab 3009 . . . . . . . 8  |-  ( B  e.  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  <->  ( B  e.  ( A [,] B
)  /\  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) )
1615simprbi 450 . . . . . . 7  |-  ( B  e.  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z )
1711, 16syl 15 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z )
1817expr 598 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  u  e.  ~P J )  -> 
( ( A [,] B )  C_  U. u  ->  E. z  e.  ( ~P u  i^i  Fin ) ( A [,] B )  C_  U. z
) )
1918ralrimiva 2711 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A. u  e.  ~P  J ( ( A [,] B ) 
C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) )
20 retop 18483 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
212, 20eqeltri 2436 . . . . 5  |-  J  e. 
Top
22 iccssre 10884 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2322adantr 451 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( A [,] B )  C_  RR )
24 uniretop 18484 . . . . . . 7  |-  RR  =  U. ( topGen `  ran  (,) )
252unieqi 3939 . . . . . . 7  |-  U. J  =  U. ( topGen `  ran  (,) )
2624, 25eqtr4i 2389 . . . . . 6  |-  RR  =  U. J
2726cmpsub 17344 . . . . 5  |-  ( ( J  e.  Top  /\  ( A [,] B ) 
C_  RR )  -> 
( ( Jt  ( A [,] B ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( A [,] B )  C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) ) )
2821, 23, 27sylancr 644 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( ( Jt  ( A [,] B ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( A [,] B ) 
C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) ) )
2919, 28mpbird 223 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( Jt  ( A [,] B ) )  e.  Comp )
30 rexr 9024 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
31 rexr 9024 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
32 icc0 10857 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  B  <  A ) )
3330, 31, 32syl2an 463 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A [,] B )  =  (/)  <->  B  <  A ) )
3433biimpar 471 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( A [,] B )  =  (/) )
3534oveq2d 5997 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  =  ( Jt  (/) ) )
36 rest0 17117 . . . . . 6  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
3721, 36ax-mp 8 . . . . 5  |-  ( Jt  (/) )  =  { (/) }
3835, 37syl6eq 2414 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  =  { (/) } )
39 0cmp 17338 . . . 4  |-  { (/) }  e.  Comp
4038, 39syl6eqel 2454 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  e.  Comp )
41 lelttric 9074 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <  A ) )
4229, 40, 41mpjaodan 761 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Jt  ( A [,] B ) )  e. 
Comp )
431, 42syl5eqel 2450 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  T  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   {crab 2632    i^i cin 3237    C_ wss 3238   (/)c0 3543   ~Pcpw 3714   {csn 3729   U.cuni 3929   class class class wbr 4125    X. cxp 4790   ran crn 4793    |` cres 4794    o. ccom 4796   ` cfv 5358  (class class class)co 5981   Fincfn 7006   RRcr 8883   RR*cxr 9013    < clt 9014    <_ cle 9015    - cmin 9184   (,)cioo 10809   [,]cicc 10812   abscabs 11926   ↾t crest 13535   topGenctg 13552   Topctop 16848   Compccmp 17330
This theorem is referenced by:  iicmp  18604  cnheiborlem  18667  evthicc  19034  ovolicc2  19096  dvcnvrelem2  19580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ioo 10813  df-icc 10816  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-rest 13537  df-topgen 13554  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-top 16853  df-bases 16855  df-topon 16856  df-cmp 17331
  Copyright terms: Public domain W3C validator