MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Unicode version

Theorem icccmp 18330
Description: A closed interval in  RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
Assertion
Ref Expression
icccmp  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  T  e.  Comp )

Proof of Theorem icccmp
Dummy variables  u  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2  |-  T  =  ( Jt  ( A [,] B ) )
2 icccmp.1 . . . . . . . 8  |-  J  =  ( topGen `  ran  (,) )
3 eqid 2283 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
4 eqid 2283 . . . . . . . 8  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  =  {
x  e.  ( A [,] B )  |  E. z  e.  ( ~P u  i^i  Fin ) ( A [,] x )  C_  U. z }
5 simplll 734 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  A  e.  RR )
6 simpllr 735 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  B  e.  RR )
7 simplr 731 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  A  <_  B )
8 elpwi 3633 . . . . . . . . 9  |-  ( u  e.  ~P J  ->  u  C_  J )
98ad2antrl 708 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  u  C_  J )
10 simprr 733 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  ( A [,] B )  C_  U. u )
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 18329 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  B  e.  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z } )
12 oveq2 5866 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A [,] x )  =  ( A [,] B
) )
1312sseq1d 3205 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( A [,] x
)  C_  U. z  <->  ( A [,] B ) 
C_  U. z ) )
1413rexbidv 2564 . . . . . . . . 9  |-  ( x  =  B  ->  ( E. z  e.  ( ~P u  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. z  e.  ( ~P u  i^i  Fin )
( A [,] B
)  C_  U. z
) )
1514elrab 2923 . . . . . . . 8  |-  ( B  e.  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  <->  ( B  e.  ( A [,] B
)  /\  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) )
1615simprbi 450 . . . . . . 7  |-  ( B  e.  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] x )  C_  U. z }  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z )
1711, 16syl 15 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  (
u  e.  ~P J  /\  ( A [,] B
)  C_  U. u
) )  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z )
1817expr 598 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B )  /\  u  e.  ~P J )  -> 
( ( A [,] B )  C_  U. u  ->  E. z  e.  ( ~P u  i^i  Fin ) ( A [,] B )  C_  U. z
) )
1918ralrimiva 2626 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  A. u  e.  ~P  J ( ( A [,] B ) 
C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) )
20 retop 18270 . . . . . 6  |-  ( topGen ` 
ran  (,) )  e.  Top
212, 20eqeltri 2353 . . . . 5  |-  J  e. 
Top
22 iccssre 10731 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2322adantr 451 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( A [,] B )  C_  RR )
24 uniretop 18271 . . . . . . 7  |-  RR  =  U. ( topGen `  ran  (,) )
252unieqi 3837 . . . . . . 7  |-  U. J  =  U. ( topGen `  ran  (,) )
2624, 25eqtr4i 2306 . . . . . 6  |-  RR  =  U. J
2726cmpsub 17127 . . . . 5  |-  ( ( J  e.  Top  /\  ( A [,] B ) 
C_  RR )  -> 
( ( Jt  ( A [,] B ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( A [,] B )  C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) ) )
2821, 23, 27sylancr 644 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( ( Jt  ( A [,] B ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( A [,] B ) 
C_  U. u  ->  E. z  e.  ( ~P u  i^i 
Fin ) ( A [,] B )  C_  U. z ) ) )
2919, 28mpbird 223 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( Jt  ( A [,] B ) )  e.  Comp )
30 rexr 8877 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
31 rexr 8877 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
32 icc0 10704 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  B  <  A ) )
3330, 31, 32syl2an 463 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A [,] B )  =  (/)  <->  B  <  A ) )
3433biimpar 471 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( A [,] B )  =  (/) )
3534oveq2d 5874 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  =  ( Jt  (/) ) )
36 rest0 16900 . . . . . 6  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
3721, 36ax-mp 8 . . . . 5  |-  ( Jt  (/) )  =  { (/) }
3835, 37syl6eq 2331 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  =  { (/) } )
39 0cmp 17121 . . . 4  |-  { (/) }  e.  Comp
4038, 39syl6eqel 2371 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( Jt  ( A [,] B ) )  e.  Comp )
41 lelttric 8927 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <  A ) )
4229, 40, 41mpjaodan 761 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Jt  ( A [,] B ) )  e. 
Comp )
431, 42syl5eqel 2367 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  T  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   class class class wbr 4023    X. cxp 4687   ran crn 4690    |` cres 4691    o. ccom 4693   ` cfv 5255  (class class class)co 5858   Fincfn 6863   RRcr 8736   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   (,)cioo 10656   [,]cicc 10659   abscabs 11719   ↾t crest 13325   topGenctg 13342   Topctop 16631   Compccmp 17113
This theorem is referenced by:  iicmp  18390  cnheiborlem  18452  evthicc  18819  ovolicc2  18881  dvcnvrelem2  19365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114
  Copyright terms: Public domain W3C validator