MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem2 Unicode version

Theorem icccmplem2 18328
Description: Lemma for icccmp 18330. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1  |-  J  =  ( topGen `  ran  (,) )
icccmp.2  |-  T  =  ( Jt  ( A [,] B ) )
icccmp.3  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
icccmp.4  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
icccmp.5  |-  ( ph  ->  A  e.  RR )
icccmp.6  |-  ( ph  ->  B  e.  RR )
icccmp.7  |-  ( ph  ->  A  <_  B )
icccmp.8  |-  ( ph  ->  U  C_  J )
icccmp.9  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
icccmp.10  |-  ( ph  ->  V  e.  U )
icccmp.11  |-  ( ph  ->  C  e.  RR+ )
icccmp.12  |-  ( ph  ->  ( G ( ball `  D ) C ) 
C_  V )
icccmp.13  |-  G  =  sup ( S ,  RR ,  <  )
icccmp.14  |-  R  =  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )
Assertion
Ref Expression
icccmplem2  |-  ( ph  ->  B  e.  S )
Distinct variable groups:    x, z, B    x, A, z    x, D    x, T, z    z, J    x, U, z
Allowed substitution hints:    ph( x, z)    C( x, z)    D( z)    R( x, z)    S( x, z)    G( x, z)    J( x)    V( x, z)

Proof of Theorem icccmplem2
Dummy variables  t  n  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.13 . . . . . . 7  |-  G  =  sup ( S ,  RR ,  <  )
2 icccmp.4 . . . . . . . . . 10  |-  S  =  { x  e.  ( A [,] B )  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }
3 ssrab2 3258 . . . . . . . . . 10  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  C_  ( A [,] B )
42, 3eqsstri 3208 . . . . . . . . 9  |-  S  C_  ( A [,] B )
5 icccmp.5 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
6 icccmp.6 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
7 iccssre 10731 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
85, 6, 7syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  RR )
94, 8syl5ss 3190 . . . . . . . 8  |-  ( ph  ->  S  C_  RR )
10 icccmp.1 . . . . . . . . . . 11  |-  J  =  ( topGen `  ran  (,) )
11 icccmp.2 . . . . . . . . . . 11  |-  T  =  ( Jt  ( A [,] B ) )
12 icccmp.3 . . . . . . . . . . 11  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
13 icccmp.7 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
14 icccmp.8 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  J )
15 icccmp.9 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] B
)  C_  U. U )
1610, 11, 12, 2, 5, 6, 13, 14, 15icccmplem1 18327 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  /\  A. y  e.  S  y  <_  B ) )
1716simpld 445 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
18 ne0i 3461 . . . . . . . . 9  |-  ( A  e.  S  ->  S  =/=  (/) )
1917, 18syl 15 . . . . . . . 8  |-  ( ph  ->  S  =/=  (/) )
2016simprd 449 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  S  y  <_  B )
21 breq2 4027 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
y  <_  n  <->  y  <_  B ) )
2221ralbidv 2563 . . . . . . . . . 10  |-  ( n  =  B  ->  ( A. y  e.  S  y  <_  n  <->  A. y  e.  S  y  <_  B ) )
2322rspcev 2884 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. n  e.  RR  A. y  e.  S  y  <_  n )
246, 20, 23syl2anc 642 . . . . . . . 8  |-  ( ph  ->  E. n  e.  RR  A. y  e.  S  y  <_  n )
25 suprcl 9714 . . . . . . . 8  |-  ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n
)  ->  sup ( S ,  RR ,  <  )  e.  RR )
269, 19, 24, 25syl3anc 1182 . . . . . . 7  |-  ( ph  ->  sup ( S ,  RR ,  <  )  e.  RR )
271, 26syl5eqel 2367 . . . . . 6  |-  ( ph  ->  G  e.  RR )
28 icccmp.11 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
2928rphalfcld 10402 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
3027, 29ltaddrpd 10419 . . . . 5  |-  ( ph  ->  G  <  ( G  +  ( C  / 
2 ) ) )
3129rpred 10390 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
3227, 31readdcld 8862 . . . . . 6  |-  ( ph  ->  ( G  +  ( C  /  2 ) )  e.  RR )
3327, 32ltnled 8966 . . . . 5  |-  ( ph  ->  ( G  <  ( G  +  ( C  /  2 ) )  <->  -.  ( G  +  ( C  /  2 ) )  <_  G )
)
3430, 33mpbid 201 . . . 4  |-  ( ph  ->  -.  ( G  +  ( C  /  2
) )  <_  G
)
35 icccmp.14 . . . . . . . . . 10  |-  R  =  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )
36 ifcl 3601 . . . . . . . . . . 11  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  e.  RR )
3732, 6, 36syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  e.  RR )
3835, 37syl5eqel 2367 . . . . . . . . 9  |-  ( ph  ->  R  e.  RR )
39 suprub 9715 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  A  e.  S )  ->  A  <_  sup ( S ,  RR ,  <  ) )
409, 19, 24, 17, 39syl31anc 1185 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <_  sup ( S ,  RR ,  <  ) )
4140, 1syl6breqr 4063 . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  G )
4227, 32, 30ltled 8967 . . . . . . . . . . . 12  |-  ( ph  ->  G  <_  ( G  +  ( C  / 
2 ) ) )
435, 27, 32, 41, 42letrd 8973 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  ( G  +  ( C  / 
2 ) ) )
44 breq2 4027 . . . . . . . . . . . 12  |-  ( ( G  +  ( C  /  2 ) )  =  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B )  -> 
( A  <_  ( G  +  ( C  /  2 ) )  <-> 
A  <_  if (
( G  +  ( C  /  2 ) )  <_  B , 
( G  +  ( C  /  2 ) ) ,  B ) ) )
45 breq2 4027 . . . . . . . . . . . 12  |-  ( B  =  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B )  -> 
( A  <_  B  <->  A  <_  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B ) ) )
4644, 45ifboth 3596 . . . . . . . . . . 11  |-  ( ( A  <_  ( G  +  ( C  / 
2 ) )  /\  A  <_  B )  ->  A  <_  if ( ( G  +  ( C  /  2 ) )  <_  B ,  ( G  +  ( C  /  2 ) ) ,  B ) )
4743, 13, 46syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  A  <_  if (
( G  +  ( C  /  2 ) )  <_  B , 
( G  +  ( C  /  2 ) ) ,  B ) )
4847, 35syl6breqr 4063 . . . . . . . . 9  |-  ( ph  ->  A  <_  R )
49 min2 10518 . . . . . . . . . . 11  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  B
)
5032, 6, 49syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  B
)
5135, 50syl5eqbr 4056 . . . . . . . . 9  |-  ( ph  ->  R  <_  B )
52 elicc2 10715 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( R  e.  ( A [,] B )  <-> 
( R  e.  RR  /\  A  <_  R  /\  R  <_  B ) ) )
535, 6, 52syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( R  e.  ( A [,] B )  <-> 
( R  e.  RR  /\  A  <_  R  /\  R  <_  B ) ) )
5438, 48, 51, 53mpbir3and 1135 . . . . . . . 8  |-  ( ph  ->  R  e.  ( A [,] B ) )
5527, 28ltsubrpd 10418 . . . . . . . . . . 11  |-  ( ph  ->  ( G  -  C
)  <  G )
5655, 1syl6breq 4062 . . . . . . . . . 10  |-  ( ph  ->  ( G  -  C
)  <  sup ( S ,  RR ,  <  ) )
5728rpred 10390 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
5827, 57resubcld 9211 . . . . . . . . . . 11  |-  ( ph  ->  ( G  -  C
)  e.  RR )
59 suprlub 9716 . . . . . . . . . . 11  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  ( G  -  C )  e.  RR )  ->  (
( G  -  C
)  <  sup ( S ,  RR ,  <  )  <->  E. v  e.  S  ( G  -  C
)  <  v )
)
609, 19, 24, 58, 59syl31anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( ( G  -  C )  <  sup ( S ,  RR ,  <  )  <->  E. v  e.  S  ( G  -  C
)  <  v )
)
6156, 60mpbid 201 . . . . . . . . 9  |-  ( ph  ->  E. v  e.  S  ( G  -  C
)  <  v )
62 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( x  =  v  ->  ( A [,] x )  =  ( A [,] v
) )
6362sseq1d 3205 . . . . . . . . . . . . 13  |-  ( x  =  v  ->  (
( A [,] x
)  C_  U. z  <->  ( A [,] v ) 
C_  U. z ) )
6463rexbidv 2564 . . . . . . . . . . . 12  |-  ( x  =  v  ->  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z
) )
6564, 2elrab2 2925 . . . . . . . . . . 11  |-  ( v  e.  S  <->  ( v  e.  ( A [,] B
)  /\  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. z
) )
66 unieq 3836 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  U. z  =  U. w )
6766sseq2d 3206 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( A [,] v
)  C_  U. z  <->  ( A [,] v ) 
C_  U. w ) )
6867cbvrexv 2765 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z  <->  E. w  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. w
)
69 simpr1 961 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  ( ~P U  i^i  Fin ) )
70 elin 3358 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  ( ~P U  i^i  Fin )  <->  ( w  e.  ~P U  /\  w  e.  Fin ) )
7169, 70sylib 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  e.  ~P U  /\  w  e.  Fin ) )
7271simpld 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  ~P U )
73 elpwi 3633 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ~P U  ->  w  C_  U )
7472, 73syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  C_  U
)
75 simpll 730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ph )
76 icccmp.10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  V  e.  U )
7775, 76syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  V  e.  U )
7877snssd 3760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  { V }  C_  U )
7974, 78unssd 3351 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } ) 
C_  U )
80 vex 2791 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
_V
81 snex 4216 . . . . . . . . . . . . . . . . . . . 20  |-  { V }  e.  _V
8280, 81unex 4518 . . . . . . . . . . . . . . . . . . 19  |-  ( w  u.  { V }
)  e.  _V
8382elpw 3631 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  u.  { V } )  e.  ~P U 
<->  ( w  u.  { V } )  C_  U
)
8479, 83sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  ~P U )
8571simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  w  e.  Fin )
86 snfi 6941 . . . . . . . . . . . . . . . . . 18  |-  { V }  e.  Fin
87 unfi 7124 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Fin  /\  { V }  e.  Fin )  ->  ( w  u. 
{ V } )  e.  Fin )
8885, 86, 87sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  Fin )
89 elin 3358 . . . . . . . . . . . . . . . . 17  |-  ( ( w  u.  { V } )  e.  ( ~P U  i^i  Fin ) 
<->  ( ( w  u. 
{ V } )  e.  ~P U  /\  ( w  u.  { V } )  e.  Fin ) )
9084, 88, 89sylanbrc 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( w  u.  { V } )  e.  ( ~P U  i^i  Fin ) )
91 simplr2 998 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  ( A [,] v )  C_  U. w )
92 ssun1 3338 . . . . . . . . . . . . . . . . . . . . . . 23  |-  U. w  C_  ( U. w  u.  V )
9391, 92syl6ss 3191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  ( A [,] v )  C_  ( U. w  u.  V
) )
9475, 5syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  A  e.  RR )
9575, 38syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  R  e.  RR )
96 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( t  e.  ( A [,] R )  <-> 
( t  e.  RR  /\  A  <_  t  /\  t  <_  R ) ) )
9794, 95, 96syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] R
)  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  R ) ) )
9897biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  R ) )
9998simp1d 967 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  e.  RR )
10099adantrr 697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  RR )
10198simp2d 968 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  A  <_  t )
102101adantrr 697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  A  <_  t )
103 simprr 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  <_  v )
10475, 8syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] B )  C_  RR )
105 simplr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  v  e.  ( A [,] B ) )
106104, 105sseldd 3181 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  v  e.  RR )
107 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( t  e.  ( A [,] v )  <-> 
( t  e.  RR  /\  A  <_  t  /\  t  <_  v ) ) )
10894, 106, 107syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] v
)  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  v ) ) )
109108adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  (
t  e.  ( A [,] v )  <->  ( t  e.  RR  /\  A  <_ 
t  /\  t  <_  v ) ) )
110100, 102, 103, 109mpbir3and 1135 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  ( A [,] v
) )
11193, 110sseldd 3181 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  t  <_  v ) )  ->  t  e.  ( U. w  u.  V ) )
112111expr 598 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  <_  v  ->  t  e.  ( U. w  u.  V
) ) )
11375adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ph )
114 icccmp.12 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( G ( ball `  D ) C ) 
C_  V )
115113, 114syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G ( ball `  D
) C )  C_  V )
11699adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  RR )
117113, 58syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  e.  RR )
118106adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  v  e.  RR )
119 simplr3 999 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  <  v )
120 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  v  <  t )
121117, 118, 116, 119, 120lttrd 8977 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  -  C )  <  t )
122113, 38syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  R  e.  RR )
12327, 57readdcld 8862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( G  +  C
)  e.  RR )
124113, 123syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G  +  C )  e.  RR )
12598simp3d 969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  <_  R )
126125adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  <_  R )
127 min1 10517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( G  +  ( C  /  2 ) )  e.  RR  /\  B  e.  RR )  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  ( G  +  ( C  /  2 ) ) )
12832, 6, 127syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  if ( ( G  +  ( C  / 
2 ) )  <_  B ,  ( G  +  ( C  / 
2 ) ) ,  B )  <_  ( G  +  ( C  /  2 ) ) )
12935, 128syl5eqbr 4056 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  R  <_  ( G  +  ( C  / 
2 ) ) )
130 rphalflt 10380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( C  e.  RR+  ->  ( C  /  2 )  < 
C )
13128, 130syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( C  /  2
)  <  C )
13231, 57, 27, 131ltadd2dd 8975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( G  +  ( C  /  2 ) )  <  ( G  +  C ) )
13338, 32, 123, 129, 132lelttrd 8974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  R  <  ( G  +  C ) )
134113, 133syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  R  <  ( G  +  C
) )
135116, 122, 124, 126, 134lelttrd 8974 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  <  ( G  +  C
) )
136 rexr 8877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G  -  C )  e.  RR  ->  ( G  -  C )  e.  RR* )
137 rexr 8877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G  +  C )  e.  RR  ->  ( G  +  C )  e.  RR* )
138 elioo2 10697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  -  C
)  e.  RR*  /\  ( G  +  C )  e.  RR* )  ->  (
t  e.  ( ( G  -  C ) (,) ( G  +  C ) )  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
139136, 137, 138syl2an 463 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( G  -  C
)  e.  RR  /\  ( G  +  C
)  e.  RR )  ->  ( t  e.  ( ( G  -  C ) (,) ( G  +  C )
)  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
140117, 124, 139syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  (
t  e.  ( ( G  -  C ) (,) ( G  +  C ) )  <->  ( t  e.  RR  /\  ( G  -  C )  < 
t  /\  t  <  ( G  +  C ) ) ) )
141116, 121, 135, 140mpbir3and 1135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( ( G  -  C ) (,) ( G  +  C )
) )
142113, 27syl 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  G  e.  RR )
143113, 28syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  C  e.  RR+ )
144143rpred 10390 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  C  e.  RR )
14512bl2ioo 18298 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e.  RR  /\  C  e.  RR )  ->  ( G ( ball `  D ) C )  =  ( ( G  -  C ) (,) ( G  +  C
) ) )
146142, 144, 145syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  ( G ( ball `  D
) C )  =  ( ( G  -  C ) (,) ( G  +  C )
) )
147141, 146eleqtrrd 2360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( G ( ball `  D ) C ) )
148115, 147sseldd 3181 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  V )
149 elun2 3343 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  e.  V  ->  t  e.  ( U. w  u.  V ) )
150148, 149syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  ( t  e.  ( A [,] R
)  /\  v  <  t ) )  ->  t  e.  ( U. w  u.  V ) )
151150expr 598 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( v  <  t  ->  t  e.  ( U. w  u.  V
) ) )
152106adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  v  e.  RR )
153 lelttric 8927 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  RR  /\  v  e.  RR )  ->  ( t  <_  v  \/  v  <  t ) )
15499, 152, 153syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  ( t  <_  v  \/  v  < 
t ) )
155112, 151, 154mpjaod 370 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  v  e.  ( A [,] B ) )  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  /\  t  e.  ( A [,] R ) )  ->  t  e.  ( U. w  u.  V
) )
156155ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( t  e.  ( A [,] R
)  ->  t  e.  ( U. w  u.  V
) ) )
157156ssrdv 3185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] R )  C_  ( U. w  u.  V
) )
158 uniun 3846 . . . . . . . . . . . . . . . . . 18  |-  U. (
w  u.  { V } )  =  ( U. w  u.  U. { V } )
159 unisng 3844 . . . . . . . . . . . . . . . . . . . 20  |-  ( V  e.  U  ->  U. { V }  =  V
)
16077, 159syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  U. { V }  =  V )
161160uneq2d 3329 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( U. w  u.  U. { V } )  =  ( U. w  u.  V
) )
162158, 161syl5eq 2327 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  U. (
w  u.  { V } )  =  ( U. w  u.  V
) )
163157, 162sseqtr4d 3215 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  ( A [,] R )  C_  U. (
w  u.  { V } ) )
164 unieq 3836 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( w  u. 
{ V } )  ->  U. y  =  U. ( w  u.  { V } ) )
165164sseq2d 3206 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( w  u. 
{ V } )  ->  ( ( A [,] R )  C_  U. y  <->  ( A [,] R )  C_  U. (
w  u.  { V } ) ) )
166165rspcev 2884 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  u.  { V } )  e.  ( ~P U  i^i  Fin )  /\  ( A [,] R )  C_  U. (
w  u.  { V } ) )  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
)
16790, 163, 166syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  ( A [,] B
) )  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  ( A [,] v
)  C_  U. w  /\  ( G  -  C
)  <  v )
)  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
)
1681673exp2 1169 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( w  e.  ( ~P U  i^i  Fin )  ->  ( ( A [,] v )  C_  U. w  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) ) )
169168rexlimdv 2666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( E. w  e.  ( ~P U  i^i  Fin ) ( A [,] v ) 
C_  U. w  ->  (
( G  -  C
)  <  v  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) ) )
17068, 169syl5bi 208 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( A [,] B ) )  ->  ( E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v ) 
C_  U. z  ->  (
( G  -  C
)  <  v  ->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) ) )
171170expimpd 586 . . . . . . . . . . 11  |-  ( ph  ->  ( ( v  e.  ( A [,] B
)  /\  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. z
)  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) )
17265, 171syl5bi 208 . . . . . . . . . 10  |-  ( ph  ->  ( v  e.  S  ->  ( ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) ) )
173172rexlimdv 2666 . . . . . . . . 9  |-  ( ph  ->  ( E. v  e.  S  ( G  -  C )  <  v  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) )
17461, 173mpd 14 . . . . . . . 8  |-  ( ph  ->  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
)
175 oveq2 5866 . . . . . . . . . . 11  |-  ( v  =  R  ->  ( A [,] v )  =  ( A [,] R
) )
176175sseq1d 3205 . . . . . . . . . 10  |-  ( v  =  R  ->  (
( A [,] v
)  C_  U. y  <->  ( A [,] R ) 
C_  U. y ) )
177176rexbidv 2564 . . . . . . . . 9  |-  ( v  =  R  ->  ( E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] R
)  C_  U. y
) )
178 unieq 3836 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  U. z  =  U. y )
179178sseq2d 3206 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( A [,] v
)  C_  U. z  <->  ( A [,] v ) 
C_  U. y ) )
180179cbvrexv 2765 . . . . . . . . . . . 12  |-  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. z  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y
)
18164, 180syl6bb 252 . . . . . . . . . . 11  |-  ( x  =  v  ->  ( E. z  e.  ( ~P U  i^i  Fin )
( A [,] x
)  C_  U. z  <->  E. y  e.  ( ~P U  i^i  Fin )
( A [,] v
)  C_  U. y
) )
182181cbvrabv 2787 . . . . . . . . . 10  |-  { x  e.  ( A [,] B
)  |  E. z  e.  ( ~P U  i^i  Fin ) ( A [,] x )  C_  U. z }  =  { v  e.  ( A [,] B
)  |  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. y }
1832, 182eqtri 2303 . . . . . . . . 9  |-  S  =  { v  e.  ( A [,] B )  |  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] v )  C_  U. y }
184177, 183elrab2 2925 . . . . . . . 8  |-  ( R  e.  S  <->  ( R  e.  ( A [,] B
)  /\  E. y  e.  ( ~P U  i^i  Fin ) ( A [,] R )  C_  U. y
) )
18554, 174, 184sylanbrc 645 . . . . . . 7  |-  ( ph  ->  R  e.  S )
186 suprub 9715 . . . . . . 7  |-  ( ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. n  e.  RR  A. y  e.  S  y  <_  n )  /\  R  e.  S )  ->  R  <_  sup ( S ,  RR ,  <  ) )
1879, 19, 24, 185, 186syl31anc 1185 . . . . . 6  |-  ( ph  ->  R  <_  sup ( S ,  RR ,  <  ) )
188187, 1syl6breqr 4063 . . . . 5  |-  ( ph  ->  R  <_  G )
189 iftrue 3571 . . . . . . 7  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  if ( ( G  +  ( C  /  2
) )  <_  B ,  ( G  +  ( C  /  2
) ) ,  B
)  =  ( G  +  ( C  / 
2 ) ) )
19035, 189syl5eq 2327 . . . . . 6  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  R  =  ( G  +  ( C  /  2
) ) )
191190breq1d 4033 . . . . 5  |-  ( ( G  +  ( C  /  2 ) )  <_  B  ->  ( R  <_  G  <->  ( G  +  ( C  / 
2 ) )  <_  G ) )
192188, 191syl5ibcom 211 . . . 4  |-  ( ph  ->  ( ( G  +  ( C  /  2
) )  <_  B  ->  ( G  +  ( C  /  2 ) )  <_  G )
)
19334, 192mtod 168 . . 3  |-  ( ph  ->  -.  ( G  +  ( C  /  2
) )  <_  B
)
194 iffalse 3572 . . . 4  |-  ( -.  ( G  +  ( C  /  2 ) )  <_  B  ->  if ( ( G  +  ( C  /  2
) )  <_  B ,  ( G  +  ( C  /  2
) ) ,  B
)  =  B )
19535, 194syl5eq 2327 . . 3  |-  ( -.  ( G  +  ( C  /  2 ) )  <_  B  ->  R  =  B )
196193, 195syl 15 . 2  |-  ( ph  ->  R  =  B )
197196, 185eqeltrrd 2358 1  |-  ( ph  ->  B  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ifcif 3565   ~Pcpw 3625   {csn 3640   U.cuni 3827   class class class wbr 4023    X. cxp 4687   ran crn 4690    |` cres 4691    o. ccom 4693   ` cfv 5255  (class class class)co 5858   Fincfn 6863   supcsup 7193   RRcr 8736    + caddc 8740   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   RR+crp 10354   (,)cioo 10656   [,]cicc 10659   abscabs 11719   ↾t crest 13325   topGenctg 13342   ballcbl 16371
This theorem is referenced by:  icccmplem3  18329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-xadd 10453  df-ioo 10660  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-xmet 16373  df-met 16374  df-bl 16375
  Copyright terms: Public domain W3C validator