Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Structured version   Unicode version

Theorem iccf 10995
 Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf

Proof of Theorem iccf
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 10915 . 2
21ixxf 10918 1
 Colors of variables: wff set class Syntax hints:  cpw 3791   cxp 4868  wf 5442  cxr 9111   cle 9113  cicc 10911 This theorem is referenced by:  lecldbas  17275  ovolficc  19357  ovolficcss  19358  uniiccdif  19462  uniiccvol  19464  dyadmbllem  19483  dyadmbl  19484  opnmbllem  19485  mblfinlem  26234 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-xr 9116  df-icc 10915
 Copyright terms: Public domain W3C validator