MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccid Structured version   Unicode version

Theorem iccid 10961
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )

Proof of Theorem iccid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elicc1 10960 . . . 4  |-  ( ( A  e.  RR*  /\  A  e.  RR* )  ->  (
x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
21anidms 627 . . 3  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
3 xrlenlt 9143 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  <->  -.  x  <  A ) )
4 xrlenlt 9143 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
54ancoms 440 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
6 xrlttri3 10736 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  =  A  <->  ( -.  x  <  A  /\  -.  A  <  x ) ) )
76biimprd 215 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
87ancoms 440 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
98exp3acom23 1381 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  A  <  x  -> 
( -.  x  < 
A  ->  x  =  A ) ) )
105, 9sylbid 207 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  ->  ( -.  x  <  A  ->  x  =  A ) ) )
1110com23 74 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  x  <  A  -> 
( x  <_  A  ->  x  =  A ) ) )
123, 11sylbid 207 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) )
1312ex 424 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  e.  RR*  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) ) )
14133impd 1167 . . . . 5  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  ->  x  =  A ) )
15 eleq1a 2505 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  e.  RR* ) )
16 xrleid 10743 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_  A )
17 breq2 4216 . . . . . . 7  |-  ( x  =  A  ->  ( A  <_  x  <->  A  <_  A ) )
1816, 17syl5ibrcom 214 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  A  <_  x ) )
19 breq1 4215 . . . . . . 7  |-  ( x  =  A  ->  (
x  <_  A  <->  A  <_  A ) )
2016, 19syl5ibrcom 214 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  <_  A ) )
2115, 18, 203jcad 1135 . . . . 5  |-  ( A  e.  RR*  ->  ( x  =  A  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  A ) ) )
2214, 21impbid 184 . . . 4  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  =  A ) )
23 elsn 3829 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
2422, 23syl6bbr 255 . . 3  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  e.  { A } ) )
252, 24bitrd 245 . 2  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  x  e.  { A } ) )
2625eqrdv 2434 1  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {csn 3814   class class class wbr 4212  (class class class)co 6081   RR*cxr 9119    < clt 9120    <_ cle 9121   [,]cicc 10919
This theorem is referenced by:  snunioo  11023  snunico  11024  prunioo  11025  icccmplem1  18853  ivthicc  19355  ioombl  19459  volivth  19499  mbfimasn  19526  itgspliticc  19728  dvivth  19894  snunioc  24137  cvmliftlem10  24981  mblfinlem2  26244  areacirc  26297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-icc 10923
  Copyright terms: Public domain W3C validator