Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccleub2 Unicode version

Theorem iccleub2 25135
Description: An element of a closed interval is more than or equal to its lower bound. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iccleub2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B
) )  ->  A  <_  C )

Proof of Theorem iccleub2
StepHypRef Expression
1 elicc1 10700 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
2 simp2 956 . . 3  |-  ( ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B )  ->  A  <_  C )
31, 2syl6bi 219 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  ->  A  <_  C ) )
433impia 1148 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B
) )  ->  A  <_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RR*cxr 8866    <_ cle 8868   [,]cicc 10659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-xr 8871  df-icc 10663
  Copyright terms: Public domain W3C validator