Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllyscon Unicode version

Theorem iccllyscon 24716
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllyscon  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon )

Proof of Theorem iccllyscon
Dummy variables  a 
b  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 733 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  x  e.  ( topGen `  ran  (,) )
)
2 inss1 3504 . . . . . 6  |-  ( x  i^i  ( A [,] B ) )  C_  x
3 simprr 734 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  y  e.  ( x  i^i  ( A [,] B ) ) )
42, 3sseldi 3289 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  y  e.  x )
5 tg2 16953 . . . . 5  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x ) )
61, 4, 5syl2anc 643 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x ) )
7 ioof 10934 . . . . . . . 8  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
8 ffn 5531 . . . . . . . 8  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
9 ovelrn 6161 . . . . . . . 8  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
107, 8, 9mp2b 10 . . . . . . 7  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
11 inss1 3504 . . . . . . . . . . . 12  |-  ( z  i^i  ( A [,] B ) )  C_  z
12 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
z  C_  x )
1311, 12syl5ss 3302 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( z  i^i  ( A [,] B ) ) 
C_  x )
14 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
y  e.  z )
15 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
z  =  ( a (,) b ) )
1615ineq1d 3484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( z  i^i  ( A [,] B ) )  =  ( ( a (,) b )  i^i  ( A [,] B
) ) )
1716oveq2d 6036 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  =  ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) ) )
18 iooscon 24713 . . . . . . . . . . . . . . . 16  |-  ( (
topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon
19 ioossre 10904 . . . . . . . . . . . . . . . . 17  |-  ( a (,) b )  C_  RR
20 eqid 2387 . . . . . . . . . . . . . . . . . . 19  |-  ( (
topGen `  ran  (,) )t  (
a (,) b ) )  =  ( (
topGen `  ran  (,) )t  (
a (,) b ) )
2120rescon 24712 . . . . . . . . . . . . . . . . . 18  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  ( ( topGen `
 ran  (,) )t  (
a (,) b ) )  e.  Con )
)
22 reconn 18730 . . . . . . . . . . . . . . . . . 18  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e.  Con  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) ) )
2321, 22bitrd 245 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) ) )
2419, 23ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( ( topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon  <->  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b ) )
2518, 24mpbi 200 . . . . . . . . . . . . . . 15  |-  A. u  e.  ( a (,) b
) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )
26 inss1 3504 . . . . . . . . . . . . . . . 16  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  ( a (,) b
)
27 ssralv 3350 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. v  e.  ( a (,) b ) ( u [,] v )  C_  ( a (,) b
)  ->  A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( a (,) b ) ) )
2827ralimdv 2728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( a (,) b ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
29 ssralv 3350 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( a (,) b )  ->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
3028, 29syld 42 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( a (,) b
)  ->  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) ) )
3126, 30ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( a (,) b ) A. v  e.  ( a (,) b
) ( u [,] v )  C_  (
a (,) b )  ->  A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) )
3225, 31mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b ) )
33 inss2 3505 . . . . . . . . . . . . . . 15  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  ( A [,] B )
34 iccconn 18732 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e.  Con )
35 iccssre 10924 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
36 reconn 18730 . . . . . . . . . . . . . . . . . 18  |-  ( ( A [,] B ) 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  e.  Con  <->  A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B ) ) )
3735, 36syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  e. 
Con 
<-> 
A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v
)  C_  ( A [,] B ) ) )
3834, 37mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v
)  C_  ( A [,] B ) )
3938ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( A [,] B ) ( u [,] v )  C_  ( A [,] B ) )
40 ssralv 3350 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. v  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4140ralimdv 2728 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. u  e.  ( A [,] B ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
42 ssralv 3350 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) ( u [,] v
)  C_  ( A [,] B )  ->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4341, 42syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  ( A [,] B )  ->  ( A. u  e.  ( A [,] B
) A. v  e.  ( A [,] B
) ( u [,] v )  C_  ( A [,] B )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4433, 39, 43mpsyl 61 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) )
45 ssin 3506 . . . . . . . . . . . . . . . 16  |-  ( ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  ( u [,] v )  C_  (
( a (,) b
)  i^i  ( A [,] B ) ) )
46452ralbii 2675 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
47 r19.26-2 2782 . . . . . . . . . . . . . . 15  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( ( u [,] v
)  C_  ( a (,) b )  /\  (
u [,] v ) 
C_  ( A [,] B ) )  <->  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b )  /\  A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4846, 47bitr3i 243 . . . . . . . . . . . . . 14  |-  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) )  <->  ( A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( a (,) b )  /\  A. u  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( A [,] B ) ) )
4932, 44, 48sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  ->  A. u  e.  (
( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5026, 19sstri 3300 . . . . . . . . . . . . . 14  |-  ( ( a (,) b )  i^i  ( A [,] B ) )  C_  RR
51 eqid 2387 . . . . . . . . . . . . . . . 16  |-  ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  =  ( ( topGen ` 
ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5251rescon 24712 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<->  ( ( topGen `  ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B ) ) )  e.  Con )
)
53 reconn 18730 . . . . . . . . . . . . . . 15  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e.  Con  <->  A. u  e.  ( ( a (,) b )  i^i  ( A [,] B ) ) A. v  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) ) )
5452, 53bitrd 245 . . . . . . . . . . . . . 14  |-  ( ( ( a (,) b
)  i^i  ( A [,] B ) )  C_  RR  ->  ( ( (
topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<-> 
A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) ) )
5550, 54ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( ( topGen `  ran  (,) )t  (
( a (,) b
)  i^i  ( A [,] B ) ) )  e. SCon 
<-> 
A. u  e.  ( ( a (,) b
)  i^i  ( A [,] B ) ) A. v  e.  ( (
a (,) b )  i^i  ( A [,] B ) ) ( u [,] v ) 
C_  ( ( a (,) b )  i^i  ( A [,] B
) ) )
5649, 55sylibr 204 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( ( a (,) b )  i^i  ( A [,] B ) ) )  e. SCon )
5717, 56eqeltrd 2461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon )
5813, 14, 573jca 1134 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  ( x  i^i  ( A [,] B ) ) ) )  /\  (
z  =  ( a (,) b )  /\  ( y  e.  z  /\  z  C_  x
) ) )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
5958exp32 589 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( z  =  ( a (,) b )  ->  (
( y  e.  z  /\  z  C_  x
)  ->  ( (
z  i^i  ( A [,] B ) )  C_  x  /\  y  e.  z  /\  ( ( topGen ` 
ran  (,) )t  ( z  i^i  ( A [,] B
) ) )  e. SCon
) ) ) )
6059rexlimdvw 2776 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. b  e.  RR*  z  =  ( a (,) b
)  ->  ( (
y  e.  z  /\  z  C_  x )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6160rexlimdvw 2776 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( y  e.  z  /\  z  C_  x )  ->  (
( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6210, 61syl5bi 209 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( z  e.  ran  (,)  ->  ( ( y  e.  z  /\  z  C_  x )  -> 
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) ) )
6362reximdvai 2759 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. z  e.  ran  (,) (
y  e.  z  /\  z  C_  x )  ->  E. z  e.  ran  (,) ( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
64 retopbas 18665 . . . . . 6  |-  ran  (,)  e. 
TopBases
65 bastg 16954 . . . . . 6  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
66 ssrexv 3351 . . . . . 6  |-  ( ran 
(,)  C_  ( topGen `  ran  (,) )  ->  ( E. z  e.  ran  (,) (
( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon )  ->  E. z  e.  ( topGen `  ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
6764, 65, 66mp2b 10 . . . . 5  |-  ( E. z  e.  ran  (,) ( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon )  ->  E. z  e.  ( topGen `
 ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
6863, 67syl6 31 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  ( E. z  e.  ran  (,) (
y  e.  z  /\  z  C_  x )  ->  E. z  e.  ( topGen `
 ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
696, 68mpd 15 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( x  e.  ( topGen `  ran  (,) )  /\  y  e.  (
x  i^i  ( A [,] B ) ) ) )  ->  E. z  e.  ( topGen `  ran  (,) )
( ( z  i^i  ( A [,] B
) )  C_  x  /\  y  e.  z  /\  ( ( topGen `  ran  (,) )t  ( z  i^i  ( A [,] B ) ) )  e. SCon ) )
7069ralrimivva 2741 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  (
topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) )
71 retop 18666 . . 3  |-  ( topGen ` 
ran  (,) )  e.  Top
72 ovex 6045 . . 3  |-  ( A [,] B )  e. 
_V
73 subislly 17465 . . 3  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon  <->  A. x  e.  ( topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) ) )
7471, 72, 73mp2an 654 . 2  |-  ( ( ( topGen `  ran  (,) )t  ( A [,] B ) )  e. Locally SCon 
<-> 
A. x  e.  (
topGen `  ran  (,) ) A. y  e.  (
x  i^i  ( A [,] B ) ) E. z  e.  ( topGen ` 
ran  (,) ) ( ( z  i^i  ( A [,] B ) ) 
C_  x  /\  y  e.  z  /\  (
( topGen `  ran  (,) )t  (
z  i^i  ( A [,] B ) ) )  e. SCon ) )
7570, 74sylibr 204 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  e. Locally SCon )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   _Vcvv 2899    i^i cin 3262    C_ wss 3263   ~Pcpw 3742    X. cxp 4816   ran crn 4819    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   RRcr 8922   RR*cxr 9052   (,)cioo 10848   [,]cicc 10851   ↾t crest 13575   topGenctg 13592   Topctop 16881   TopBasesctb 16885   Conccon 17395  Locally clly 17448  SConcscon 24686
This theorem is referenced by:  iillyscon  24719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-cn 17213  df-cnp 17214  df-con 17396  df-lly 17450  df-tx 17515  df-hmeo 17708  df-xms 18259  df-ms 18260  df-tms 18261  df-ii 18778  df-htpy 18866  df-phtpy 18867  df-phtpc 18888  df-pcon 24687  df-scon 24688
  Copyright terms: Public domain W3C validator