MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccordt Structured version   Unicode version

Theorem iccordt 17280
Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iccordt  |-  ( A [,] B )  e.  ( Clsd `  (ordTop ` 
<_  ) )

Proof of Theorem iccordt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6086 . 2  |-  ( A [,] B )  =  ( [,] `  <. A ,  B >. )
2 letsr 14674 . . . . . 6  |-  <_  e.  TosetRel
3 ledm 14671 . . . . . . 7  |-  RR*  =  dom  <_
43ordtcld3 17265 . . . . . 6  |-  ( (  <_  e.  TosetRel  /\  x  e.  RR*  /\  y  e. 
RR* )  ->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop ` 
<_  ) ) )
52, 4mp3an1 1267 . . . . 5  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop ` 
<_  ) ) )
65rgen2a 2774 . . . 4  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <_  z  /\  z  <_  y ) }  e.  ( Clsd `  (ordTop `  <_  ) )
7 df-icc 10925 . . . . 5  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
87fmpt2 6420 . . . 4  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) }  e.  ( Clsd `  (ordTop `  <_  ) )  <->  [,] : ( RR*  X. 
RR* ) --> ( Clsd `  (ordTop `  <_  ) ) )
96, 8mpbi 201 . . 3  |-  [,] :
( RR*  X.  RR* ) --> ( Clsd `  (ordTop `  <_  ) )
10 letop 17272 . . . 4  |-  (ordTop `  <_  )  e.  Top
11 0cld 17104 . . . 4  |-  ( (ordTop `  <_  )  e.  Top  -> 
(/)  e.  ( Clsd `  (ordTop `  <_  ) ) )
1210, 11ax-mp 8 . . 3  |-  (/)  e.  (
Clsd `  (ordTop `  <_  ) )
139, 12f0cli 5882 . 2  |-  ( [,] `  <. A ,  B >. )  e.  ( Clsd `  (ordTop `  <_  ) )
141, 13eqeltri 2508 1  |-  ( A [,] B )  e.  ( Clsd `  (ordTop ` 
<_  ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    e. wcel 1726   A.wral 2707   {crab 2711   (/)c0 3630   <.cop 3819   class class class wbr 4214    X. cxp 4878   -->wf 5452   ` cfv 5456  (class class class)co 6083   RR*cxr 9121    <_ cle 9123   [,]cicc 10921  ordTopcordt 13723    TosetRel ctsr 14627   Topctop 16960   Clsdccld 17082
This theorem is referenced by:  lecldbas  17285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-pre-lttri 9066  ax-pre-lttrn 9067
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-icc 10925  df-topgen 13669  df-ordt 13727  df-ps 14631  df-tsr 14632  df-top 16965  df-bases 16967  df-topon 16968  df-cld 17085
  Copyright terms: Public domain W3C validator