MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccshftr Structured version   Unicode version

Theorem iccshftr 11022
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftr.1  |-  ( A  +  R )  =  C
iccshftr.2  |-  ( B  +  R )  =  D
Assertion
Ref Expression
iccshftr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )

Proof of Theorem iccshftr
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  X  e.  RR )
2 readdcl 9065 . . . . 5  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  +  R
)  e.  RR )
31, 22thd 232 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
43adantl 453 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  RR  <->  ( X  +  R )  e.  RR ) )
5 leadd1 9488 . . . . . 6  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  R  e.  RR )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
653expb 1154 . . . . 5  |-  ( ( A  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R )
) )
76adantlr 696 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  ( A  +  R )  <_  ( X  +  R ) ) )
8 iccshftr.1 . . . . 5  |-  ( A  +  R )  =  C
98breq1i 4211 . . . 4  |-  ( ( A  +  R )  <_  ( X  +  R )  <->  C  <_  ( X  +  R ) )
107, 9syl6bb 253 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( A  <_  X  <->  C  <_  ( X  +  R ) ) )
11 leadd1 9488 . . . . . . 7  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  R  e.  RR )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
12113expb 1154 . . . . . 6  |-  ( ( X  e.  RR  /\  ( B  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1312an12s 777 . . . . 5  |-  ( ( B  e.  RR  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R )
) )
1413adantll 695 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  ( B  +  R ) ) )
15 iccshftr.2 . . . . 5  |-  ( B  +  R )  =  D
1615breq2i 4212 . . . 4  |-  ( ( X  +  R )  <_  ( B  +  R )  <->  ( X  +  R )  <_  D
)
1714, 16syl6bb 253 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  <_  B  <->  ( X  +  R )  <_  D ) )
184, 10, 173anbi123d 1254 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  e.  RR  /\  A  <_  X  /\  X  <_  B
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
19 elicc2 10967 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
2019adantr 452 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <_  B ) ) )
21 readdcl 9065 . . . . . 6  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  ( A  +  R
)  e.  RR )
228, 21syl5eqelr 2520 . . . . 5  |-  ( ( A  e.  RR  /\  R  e.  RR )  ->  C  e.  RR )
23 readdcl 9065 . . . . . 6  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  ( B  +  R
)  e.  RR )
2415, 23syl5eqelr 2520 . . . . 5  |-  ( ( B  e.  RR  /\  R  e.  RR )  ->  D  e.  RR )
25 elicc2 10967 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2622, 24, 25syl2an 464 . . . 4  |-  ( ( ( A  e.  RR  /\  R  e.  RR )  /\  ( B  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2726anandirs 805 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  R  e.  RR )  ->  ( ( X  +  R )  e.  ( C [,] D
)  <->  ( ( X  +  R )  e.  RR  /\  C  <_ 
( X  +  R
)  /\  ( X  +  R )  <_  D
) ) )
2827adantrl 697 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( ( X  +  R )  e.  ( C [,] D )  <-> 
( ( X  +  R )  e.  RR  /\  C  <_  ( X  +  R )  /\  ( X  +  R )  <_  D ) ) )
2918, 20, 283bitr4d 277 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   RRcr 8981    + caddc 8985    <_ cle 9113   [,]cicc 10911
This theorem is referenced by:  iccshftri  11023  lincmb01cmp  11030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-icc 10915
  Copyright terms: Public domain W3C validator